Faculty of Mathematics and Physics, Charles University

Goal-oriented a posteriori error estimates and where to find them

PANM 20

Vít Dolejší, Filip Roskovec

24. 6. 2020

Content

Linear problems

Motivating experiment Standard DWR method DG discretization Adjoint consistency Algebraic errors *hp*-anisotropic mesh adaptation Numerical experiments

Nonlinear problems

Abstract setting Euler equations

• we are not interested in u itself, but in the quantity of interest J(u)

- mean heat flux through the part of boundary (Nusselt number)
- regularized point value
- drag and lift coefficient in aerodynamics
- mean surface pressure of a body in an inviscid flow
- ► $J: V \rightarrow \mathbb{R}$ target functional
 - J(u) may be linear or nonlinear (usually for nonlinear problems)

• we are not interested in u itself, but in the quantity of interest J(u)

- mean heat flux through the part of boundary (Nusselt number)
- regularized point value
- drag and lift coefficient in aerodynamics
- mean surface pressure of a body in an inviscid flow
- ► $J: V \rightarrow \mathbb{R}$ target functional
- \blacktriangleright J(u) may be linear or nonlinear (usually for nonlinear problems)

• we are not interested in u itself, but in the quantity of interest J(u)

- mean heat flux through the part of boundary (Nusselt number)
- regularized point value
- drag and lift coefficient in aerodynamics
- mean surface pressure of a body in an inviscid flow
- $J: V \rightarrow \mathbb{R}$ target functional
 - J(u) may be linear or nonlinear (usually for nonlinear problems)

• we are not interested in u itself, but in the quantity of interest J(u)

- mean heat flux through the part of boundary (Nusselt number)
- regularized point value
- drag and lift coefficient in aerodynamics
- mean surface pressure of a body in an inviscid flow
- $J: V \rightarrow \mathbb{R}$ target functional
- J(u) may be linear or nonlinear (usually for nonlinear problems)

Motivating experiment Linear case with dominant convection

Problem setting

Primal problem:
$$-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$$
, $\boldsymbol{b} = (-x_2, x_1), \varepsilon = 10^{-6}$
Target functional $J(u) = \frac{1}{|\boldsymbol{E}|} \int_{\boldsymbol{E}} u \, \mathrm{d}x$

Boundary conditions and primal solution

Motivating experiment Linear case with dominant convection

Problem setting

Primal problem:
$$-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$$
, $\boldsymbol{b} = (-x_2, x_1), \varepsilon = 10^{-6}$
Target functional $J(u) = \frac{1}{|\boldsymbol{E}|} \int_{\boldsymbol{E}} u \, \mathrm{d}x$

Adaptive refinement based on a standard estimates

Primal problem: $-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$, $\boldsymbol{b} = (-x_2, x_1)$, $\varepsilon = 10^{-6}$ Adjoint problem: $-\varepsilon \Delta z - \boldsymbol{b} \cdot \nabla z = \chi_F$, where $E \subset \Omega$.

Primal and adjoint solutions

Primal problem:
$$-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$$
, $\boldsymbol{b} = (-x_2, x_1), \varepsilon = 10^{-6}$

Adjoint problem: $-\varepsilon \Delta z - \boldsymbol{b} \cdot \nabla z = \chi_E$, where $\boldsymbol{E} \subset \Omega$.

Adaptive refinement based on goal-oriented algorithm

Primal problem:
$$-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$$
, $\boldsymbol{b} = (-x_2, x_1), \varepsilon = 10^{-6}$

Adjoint problem: $-\varepsilon \Delta z - \boldsymbol{b} \cdot \nabla z = \chi_E$, where $\boldsymbol{E} \subset \Omega$.

Comparison of the resulting solutions

Primal problem: $-\varepsilon \Delta u + \nabla \cdot (\boldsymbol{b}u) = 0$, $\boldsymbol{b} = (-x_2, x_1)$, $\varepsilon = 10^{-6}$

Adjoint problem: $-\varepsilon \Delta z - \boldsymbol{b} \cdot \nabla z = \chi_E$, where $\boldsymbol{E} \subset \Omega$.

Comparison of resulting meshes

Poisson equation

Find a function *u* such that

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Primal weak formulation

Find $u \in H_0^1(\Omega)$ such that

 $a(u,\varphi) = \ell(\varphi) \quad \forall \varphi \in H^1_0(\Omega)$

where $a(u, \varphi) = (\nabla u, \nabla \varphi)_{\Omega}$ and $\ell(\varphi) = (f, \varphi)_{\Omega}$.

Adjoint weak formulation

Find $z \in H_0^1(\Omega)$ such that

 $a(\phi, z) = J(\phi) \quad \forall \phi \in H^1_0(\Omega)$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Primal weak formulation

Find $u \in H_0^1(\Omega)$ such that

 $a(u,\varphi) = \ell(\varphi) \quad \forall \varphi \in H^1_0(\Omega)$

where $a(u, \varphi) = (\nabla u, \nabla \varphi)_{\Omega}$ and $\ell(\varphi) = (f, \varphi)_{\Omega}$.

Adjoint weak formulation

Find $z \in H_0^1(\Omega)$ such that

 $a(\phi, z) = J(\phi) \quad \forall \phi \in H^1_0(\Omega)$

Primal discrete problem

Find $u_h \in V_h := \{ v \in C(\overline{\Omega}); v |_k \in P^p(K), \forall K \in \mathcal{T}_h \}$ such that

$$a(u_h,\varphi_h) = \ell(\varphi_h) \quad \forall \varphi_h \in V_h.$$

Adjoint discrete problem

Find $z_h \in V_h$ such that

 $a(\phi_h, z_h) = J(\phi_h) \quad \forall \phi_h \in V_h.$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Primal discrete problem

Find $u_h \in V_h := \{ v \in C(\overline{\Omega}); v |_k \in P^p(K), \forall K \in \mathcal{T}_h \}$ such that

$$a(u_h, \varphi_h) = \ell(\varphi_h) \quad \forall \varphi_h \in V_h.$$

Adjoint discrete problem

Find $z_h \in V_h$ such that

$$a(\phi_h, z_h) = J(\phi_h) \quad \forall \phi_h \in V_h.$$

Error identity

$$J(u) - J(u_h) = J(u - u_h) = a(u - u_h, z)$$

= $a(u - u_h, z - \varphi_h)$
= $f(z - \varphi_h) - a(u_h, z - \varphi_h)$
=: $r_h(u_h)(z - \varphi_h) \quad \forall \varphi_h \in V_h$

Adjoint error identity

$$J(u) - J(u_h) = a(u - u_h, z)$$

= $a(u - u_h, z - z_h)$
= $a(u - \varphi_h, z - z_h)$
= $J(u - \varphi_h) - a(u - \varphi_h, z_h)$
=: $r_h^*(z_h)(u - \varphi_h) \quad \forall \varphi_h \in V_h$

Error identity

$$J(u) - J(u_h) = J(u - u_h) = a(u - u_h, z)$$

= $a(u - u_h, z - \varphi_h)$
= $f(z - \varphi_h) - a(u_h, z - \varphi_h)$
=: $r_h(u_h)(z - \varphi_h) \quad \forall \varphi_h \in V_h$

Adjoint error identity

$$J(u) - J(u_h) = a(u - u_h, z)$$

= $a(u - u_h, z - z_h)$
= $a(u - \varphi_h, z - z_h)$
= $J(u - \varphi_h) - a(u - \varphi_h, z_h)$
=: $r_h^*(z_h)(u - \varphi_h) \quad \forall \varphi_h \in V_h$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- \blacktriangleright z has to be approximated numerically by z_h^+ ,
- ► z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+: a(arphi_h, z_h^+) = J(arphi_h) \quad orall arphi_h \in V_h^+,$
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

$$|J(u) - J(u_h)| \approx \eta^{\mathrm{I}} := \frac{1}{2}(\eta_{\mathrm{S}}(u_h, z_h) + \eta_{\mathrm{S}}^*(u_h, z_h))$$

where

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- > z has to be approximated numerically by z_h^+ ,
- ► z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+: a(arphi_h, z_h^+) = J(arphi_h) \quad orall arphi_h \in V_h^+,$
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

$$|J(u) - J(u_h)| \approx \eta^{\mathrm{I}} := \frac{1}{2}(\eta_{\mathrm{S}}(u_h, z_h) + \eta_{\mathrm{S}}^*(u_h, z_h))$$

where

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- *z* has to be approximated numerically by z_h^+ ,
- z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+$: $a(\varphi_h, z_h^+) = J(\varphi_h) \quad \forall \varphi_h \in V_h^+$,
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{I}} := rac{1}{2}(\eta_{\mathrm{S}}(u_h, z_h) + \eta_{\mathrm{S}}^*(u_h, z_h))$$

where

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- *z* has to be approximated numerically by z_h^+ ,
- z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+$: $a(\varphi_h, z_h^+) = J(\varphi_h) \quad \forall \varphi_h \in V_h^+$,
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

$$|J(u) - J(u_h)| \approx \eta^{\mathrm{I}} := \frac{1}{2}(\eta_{\mathrm{S}}(u_h, z_h) + \eta_{\mathrm{S}}^*(u_h, z_h))$$

where

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- *z* has to be approximated numerically by z_h^+ ,
- ► z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+$: $a(\varphi_h, z_h^+) = J(\varphi_h) \quad \forall \varphi_h \in V_h^+$,
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

$$|J(u) - J(u_h)| \approx \eta^{\mathrm{I}} := \frac{1}{2}(\eta_{\mathrm{S}}(u_h, z_h) + \eta_{\mathrm{S}}^*(u_h, z_h))$$

where

$$\eta_{\rm S} := r_h(u_h)(z_h^+ - \Pi z_h^+), \qquad \eta_{\rm S}^* := r_h^*(z_h)(u_h^+ - \Pi u_h^+).$$

- ► $J(u-u_h) = r_h(u_h)(z-\Pi z), \quad \Pi: V \to V_h$
- z has to be approximated numerically by z_h^+ ,
- z_h^+ must be in a richer space than V_h :
- 1. bigger problem: $z_h^+ \in V_h^+$: $a(\varphi_h, z_h^+) = J(\varphi_h) \quad \forall \varphi_h \in V_h^+$,
- 2. same sized problem + reconstruction $z_h^+ = \mathscr{R}(z_h) \in V_h^+$

Computable goal-oriented error estimate

due to $z \approx z_h^+, \, u \approx u_h^+$ the estimate is not guaranteed upper bound

- discontinuous Galerkin method
- adjoint consistent discretization
- ► algebraic errors
- hp-anisotropic mesh adaptation

12

Primal discrete problem

Find
$$u_h \in S_h^p := \{ v \in L^2(\Omega); v |_k \in P^p(K), \forall K \in \mathcal{T}_h \}$$
 such that

$$a_h(u_h,\varphi_h) = a_{DG}(u_h,\varphi) + J_h^{\sigma}(u_h,\varphi) = (f,\varphi_h) \quad \forall \varphi_h \in S_h^{\rho},$$

where

$$\begin{split} \mathbf{a}_{DG}(u,\varphi) &:= \sum_{K} \int_{K} \nabla u \cdot \nabla \varphi \, \mathrm{d}x - \sum_{\Gamma \in \mathscr{F}_{h}} \int_{\Gamma} (\langle \nabla u \rangle \cdot \boldsymbol{n}[\![\varphi]\!] \\ &+ \Theta \, \langle \nabla \varphi \rangle \cdot \boldsymbol{n}[\![u]\!]) \, \mathrm{d}S, \quad \Theta \in \{-1,0,1\} \\ J_{h}^{\sigma}(u,\varphi) &:= \sum_{\mathscr{F}_{h}^{I}} \int_{\Gamma} \sigma[\![u]\!][\![\varphi]\!] \, \mathrm{d}S, \quad \sigma \big|_{\Gamma} = \frac{C_{W}}{h_{\Gamma}}. \end{split}$$

Adjoint discrete problem

Find $z_h \in S_h^p$ such that

 $a_h(\phi_h, z_h) = J(\phi_h) \quad \forall \phi_h \in S_h^p.$

12

Primal discrete problem

Find
$$u_h \in S_h^p := \{ v \in L^2(\Omega); v |_k \in P^p(K), \forall K \in \mathcal{T}_h \}$$
 such that

$$a_h(u_h,\varphi_h) = a_{DG}(u_h,\varphi) + J_h^{\sigma}(u_h,\varphi) = (f,\varphi_h) \quad \forall \varphi_h \in S_h^{\rho},$$

where

$$\begin{split} \mathbf{a}_{DG}(u,\varphi) &:= \sum_{K} \int_{K} \nabla u \cdot \nabla \varphi \, \mathrm{d}x - \sum_{\Gamma \in \mathscr{F}_{h}} \int_{\Gamma} (\langle \nabla u \rangle \cdot \boldsymbol{n}[\![\varphi]\!] \\ &+ \Theta \, \langle \nabla \varphi \rangle \cdot \boldsymbol{n}[\![u]\!]) \, \mathrm{d}S, \quad \Theta \in \{-1,0,1\} \\ J_{h}^{\sigma}(u,\varphi) &:= \sum_{\mathscr{F}_{h}^{I}} \int_{\Gamma} \sigma[\![u]\!][\![\varphi]\!] \, \mathrm{d}S, \quad \sigma \big|_{\Gamma} = \frac{C_{W}}{h_{\Gamma}}. \end{split}$$

Adjoint discrete problem

Find $z_h \in S_h^p$ such that

$$a_h(\phi_h, z_h) = J(\phi_h) \quad \forall \phi_h \in S_h^p.$$

Consistency of the discretization

Consistency of the discretization

Consistency of the discretization

Consistency

- All three variants of DG discretization (SIPG,NIPG,IIPG) are consistent.
- Only the symmetric variant (SIPG) of DG discretization is adjoint consistent.

Problematic term in the discretization of the diffusive term:

$$\sum_{K\in\mathcal{T}_h}\int_K \nabla\varphi\cdot\nabla z\,\mathrm{d}x - \sum_{\Gamma\in\mathscr{F}_h^{D}}\int_{\Gamma}\langle\nabla\varphi\rangle\cdot\boldsymbol{n}[\![z]\!] + \theta\,\langle\nabla z\rangle\cdot\boldsymbol{n}[\![\varphi]\!]\,\mathrm{d}S.$$

Poisson problem

$$-\Delta u = f \text{ in } \Omega = (0, 1)^2, \qquad u\big|_{\partial\Omega} = 0,$$

Consistency

- All three variants of DG discretization (SIPG,NIPG,IIPG) are consistent.
- Only the symmetric variant (SIPG) of DG discretization is adjoint consistent.
- Problematic term in the discretization of the diffusive term:

$$\sum_{K\in\mathcal{T}_h}\int_K \nabla\varphi\cdot\nabla z\,\mathrm{d}x - \sum_{\Gamma\in\mathscr{F}_h^{D}}\int_{\Gamma}\langle\nabla\varphi\rangle\cdot\boldsymbol{n}[\![z]\!] + \theta\,\langle\nabla z\rangle\cdot\boldsymbol{n}[\![\varphi]\!]\,\mathrm{d}S.$$

Poisson problem

$$-\Delta u = f \text{ in } \Omega = (0, 1)^2, \qquad u\big|_{\partial\Omega} = 0,$$

Consistency

- All three variants of DG discretization (SIPG,NIPG,IIPG) are consistent.
- Only the symmetric variant (SIPG) of DG discretization is adjoint consistent.
- ► Problematic term in the discretization of the diffusive term: $\sum_{K \in \mathcal{T}_h} \int_K \nabla \varphi \cdot \nabla z \, \mathrm{d}x - \sum_{\Gamma \in \mathscr{F}_h^D} \int_{\Gamma} \langle \nabla \varphi \rangle \cdot \boldsymbol{n} [\![z]\!] + \theta \, \langle \nabla z \rangle \cdot \boldsymbol{n} [\![\varphi]\!] \, \mathrm{d}S.$

Poisson problem

$$-\Delta u = f \text{ in } \Omega = (0, 1)^2, \qquad u\big|_{\partial\Omega} = 0,$$

Consistency

- All three variants of DG discretization (SIPG,NIPG,IIPG) are consistent.
- Only the symmetric variant (SIPG) of DG discretization is adjoint consistent.
- Problematic term in the discretization of the diffusive term: $\sum_{K \in \mathcal{T}_h} \int_K \nabla \varphi \cdot \nabla z \, \mathrm{d}x - \sum_{\Gamma \in \mathscr{F}_h^{D}} \int_{\Gamma} \langle \nabla \varphi \rangle \cdot \boldsymbol{n}[\![z]\!] + \theta \, \langle \nabla z \rangle \cdot \boldsymbol{n}[\![\varphi]\!] \, \mathrm{d}S.$

Poisson problem

$$-\Delta u = f \text{ in } \Omega = (0, 1)^2, \qquad u\big|_{\partial\Omega} = 0,$$
Adjoint Consistency

Consistency

- All three variants of DG discretization (SIPG,NIPG,IIPG) are consistent.
- Only the symmetric variant (SIPG) of DG discretization is adjoint consistent.
- Problematic term in the discretization of the diffusive term: $\sum_{K \in \mathcal{T}_h} \int_K \nabla \varphi \cdot \nabla z \, \mathrm{d}x - \sum_{\Gamma \in \mathscr{F}_h^{D}} \int_{\Gamma} \langle \nabla \varphi \rangle \cdot \boldsymbol{n}[\![z]\!] + \theta \, \langle \nabla z \rangle \cdot \boldsymbol{n}[\![\varphi]\!] \, \mathrm{d}S.$

Poisson problem

$$-\Delta u = f \text{ in } \Omega = (0, 1)^2, \qquad u\big|_{\partial\Omega} = 0,$$

with *f* such that: u = 16x(1 - x)y(1 - y). Quantity of interest: $J(u) = \int_{\Omega} fu \, dx \implies z = u$ Adjoint Consistency Poisson problem

primal sol _____ dual sol _____

Figure: NIPG

Adjoint Consistency Poisson problem

primal sol _____ dual sol _____

Figure: SIPG

Practically we do not have u_h , but only u_h^k , which is also suffering from algebraic errors. That leads to violation of the Galerkin orthogonality, i.e. $a_h(u - u_h^k, \varphi_h) \neq 0$, $\varphi_h \in S_h^p$.

Two ways of splitting the error

$$J(u - u_{h}^{k}) = a(u - u_{h}^{k}, z) = a(u - u_{h}^{k}, z - z_{h}^{k}) + a(u - u_{h}^{k}, z_{h}^{k})$$

$$= \ell_{h}(z - z_{h}^{k}) - a(u_{h}^{k}, z - z_{h}^{k}) + \ell_{h}(z_{h}^{k}) - a(u_{h}^{k}, z_{h}^{k})$$

$$\approx \underbrace{r_{h}(u_{h}^{k})(z_{h}^{+} - z_{h}^{k})}_{\text{disc. error}} + \underbrace{r_{h}(u_{h}^{k})(z_{h}^{k})}_{\text{alg. error}}.$$

$$J(u - u_{h}^{k}) = J(u - u_{h}) + J(u_{h} - u_{h}^{k})$$

Practically we do not have u_h , but only u_h^k , which is also suffering from algebraic errors. That leads to violation of the Galerkin orthogonality, i.e. $a_h(u - u_h^k, \varphi_h) \neq 0$, $\varphi_h \in S_h^p$.

Two ways of splitting the error

$$\begin{aligned} J(u - u_h^k) &= a(u - u_h^k, z) = a(u - u_h^k, z - z_h^k) + a(u - u_h^k, z_h^k) \\ &= \ell_h(z - z_h^k) - a(u_h^k, z - z_h^k) + \ell_h(z_h^k) - a(u_h^k, z_h^k) \\ &\approx \underbrace{r_h(u_h^k)(z_h^+ - z_h^k)}_{\text{disc. error}} + \underbrace{r_h(u_h^k)(z_h^k)}_{\text{alg. error}}. \end{aligned}$$

Algebraic representation of the discrete problem

$$egin{aligned} a_h(u_h,arphi_h) &= \ell_h(arphi_h), \quad a_h(\psi_h,z_h) &= J(\psi_h) \quad orall arphi_h,\psi_h\in S_h^{
ho} \ &\downarrow \ & \mathbb{A}^{\mathrm{T}}y = c \end{aligned}$$

Biconjugate gradient method (BiCG)

- ► BiCG is a Krylov subspace method using short recurrences for solving altogether both systems Ax = b, A^Ty = c
- ln each iteration updates approximations x_k , y_k using coefficients α_k , β_k and vectors r_k , s_k , p_k , q_k .

Algebraic representation of the discrete problem

$$egin{aligned} a_h(u_h,arphi_h) &= \ell_h(arphi_h), \quad a_h(\psi_h,z_h) &= J(\psi_h) \quad orall arphi_h,\psi_h\in S_h^{
ho} \ &\downarrow \ & \mathbb{A}^{\mathrm{T}}y = c \end{aligned}$$

Biconjugate gradient method (BiCG)

- ► BiCG is a Krylov subspace method using short recurrences for solving altogether both systems Ax = b, A^Ty = c
- ► In each iteration updates approximations x_k , y_k using coefficients α_k , β_k and vectors r_k , s_k , p_k , q_k .

BiCG and goal-oriented estimates

Estimate of the algebraic error

$$J(u_{h}) = c^{T} \mathbb{A}^{-1} b = \xi^{P} + \xi^{B}_{k} + s^{T}_{k} \mathbb{A}^{-1} r_{k},$$

where $\xi^{P} = c^{T} x_{0} + y^{T}_{0} r_{0}, \xi^{B}_{k} = \sum_{i=0}^{k-1} \alpha_{i} s^{T}_{i} r_{i}.$ Then
 $J(u_{h}) - J(u^{k}_{h}) = \xi^{B}_{k+\nu} - \xi^{B}_{k} + s^{T}_{k+\nu} \mathbb{A}^{-1} r_{k+\nu} \approx \xi^{B}_{k+\nu} - \xi^{B}_{k}$

σ-stopping criterion [Dolejší and Tichý, 2020]

 $\max(\sigma_{A,k}, \sigma^*_{A,k}) \leq c_A \omega$ where $\omega > 0$ is given tolerance and

 $\begin{aligned} \sigma_{A,k} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |y_{k}^{T}r_{k}| \approx |J(u_{h} - u_{h}^{k})| + |r_{h}(u_{h}^{k})(z_{h}^{k})|, \\ \sigma_{A,k}^{*} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |s_{k}^{T}x_{k}| \approx |\ell_{h}(z_{h} - z_{h}^{k})| + |r_{h}^{*}(z_{h}^{k})(u_{h}^{k})|. \end{aligned}$

BiCG and goal-oriented estimates

Estimate of the algebraic error

$$J(u_h) = c^{\mathrm{T}} \mathbb{A}^{-1} b = \xi^P + \xi_k^B + s_k^{\mathrm{T}} \mathbb{A}^{-1} r_k,$$

where $\xi^P = c^{\mathrm{T}} x_0 + y_0^{\mathrm{T}} r_0, \xi_k^B = \sum_{i=0}^{k-1} \alpha_i s_i^{\mathrm{T}} r_i.$ Then
$$J(u_h) - J(u_h^k) = \xi_{k+\nu}^B - \xi_k^B + s_{k+\nu}^{\mathrm{T}} \mathbb{A}^{-1} r_{k+\nu} \approx \xi_{k+\nu}^B - \xi_k^B$$

σ -stopping criterion [Dolejší and Tichý, 2020]

 $\max(\sigma_{A,k}, \sigma^*_{A,k}) \leq c_A \omega$ where $\omega > 0$ is given tolerance and

 $\begin{aligned} \sigma_{A,k} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |y_{k}^{T}r_{k}| \approx |J(u_{h} - u_{h}^{k})| + |r_{h}(u_{h}^{k})(z_{h}^{k})|, \\ \sigma_{A,k}^{*} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |s_{k}^{T}x_{k}| \approx |\ell_{h}(z_{h} - z_{h}^{k})| + |r_{h}^{*}(z_{h}^{k})(u_{h}^{k})|. \end{aligned}$

BiCG and goal-oriented estimates

Estimate of the algebraic error

$$J(u_h) = c^{\mathrm{T}} \mathbb{A}^{-1} b = \xi^P + \xi_k^B + s_k^{\mathrm{T}} \mathbb{A}^{-1} r_k,$$

where $\xi^P = c^{\mathrm{T}} x_0 + y_0^{\mathrm{T}} r_0, \xi_k^B = \sum_{i=0}^{k-1} \alpha_i s_i^{\mathrm{T}} r_i.$ Then
$$J(u_h) - J(u_h^k) = \xi_{k+\nu}^B - \xi_k^B + s_{k+\nu}^{\mathrm{T}} \mathbb{A}^{-1} r_{k+\nu} \approx \xi_{k+\nu}^B - \xi_k^B$$

σ -stopping criterion [Dolejší and Tichý, 2020]

 $\max(\sigma_{A,k}, \sigma^*_{A,k}) \leq c_A \omega$ where $\omega > 0$ is given tolerance and

$$\begin{aligned} \sigma_{A,k} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |y_{k}^{\mathrm{T}} r_{k}| \approx |J(u_{h} - u_{h}^{k})| + |r_{h}(u_{h}^{k})(z_{h}^{k})|, \\ \sigma_{A,k}^{*} &:= |\xi_{k+\nu}^{B} - \xi_{k}^{B}| + |s_{k}^{\mathrm{T}} x_{k}| \approx |\ell_{h}(z_{h} - z_{h}^{k})| + |r_{h}^{*}(z_{h}^{k})(u_{h}^{k})| \end{aligned}$$

19

Our goal

Construct an anisotropic hp-mesh such that

- the error estimate η^{I} is under the given tolerance
- the number of Degrees of Freedom (DoF) is minimal

hp-anisotropic mesh adaptation

We optimize

- 1. size of each triangle K (adaptive)
- 2. shape of each triangle (anisotropic)
- 3. local polynomial approximation degree (hp-)

19

Our goal

Construct an anisotropic hp-mesh such that

- the error estimate η^{I} is under the given tolerance
- the number of Degrees of Freedom (DoF) is minimal

hp-anisotropic mesh adaptation

We optimize

- 1. size of each triangle K (adaptive)
- 2. shape of each triangle (anisotropic)
- 3. local polynomial approximation degree (hp-)

Anisotropic mesh adaptation

Each element of the mesh should have optimal size and shape. Anisotropy of triangle is given by the triplet $\{\lambda_K, \sigma_K, \phi_K\}$:

• size
$$\lambda_K = \sqrt{I_{K,1}I_{K,2}}$$
,

• ratio
$$\sigma_K = \sqrt{I_{K,2}/I_{K,1}}$$

• orientation $\phi_{\mathcal{K}} \in [0, \pi)$

hp-mesh adaptation

Each element K has its own pol. degree approximation p_K .

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Anisotropic mesh adaptation

Each element of the mesh should have optimal size and shape. Anisotropy of triangle is given by the triplet $\{\lambda_K, \sigma_K, \phi_K\}$:

• size
$$\lambda_K = \sqrt{I_{K,1}I_{K,2}}$$
,

• ratio
$$\sigma_K = \sqrt{I_{K,2}/I_{K,1}}$$

• orientation $\phi_{\mathcal{K}} \in [0, \pi)$

hp-mesh adaptation

Each element K has its own pol. degree approximation p_K .

hp-anisotropic mesh adaptation Goal-oriented error estimates in residual form

Goal-oriented error estimates in residual form

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{I}} \leq \sum_{K \in \mathcal{T}_h} \eta^{\mathrm{I\!I}}_K$$

where

$$\begin{split} \eta_{K}^{\mathrm{I\!I}} &:= \frac{1}{2} \left(R_{K,\mathrm{V}} \left\| z_{h}^{+} - \Pi z_{h}^{+} \right\|_{K} + R_{K,\mathrm{V}}^{*} \left\| u_{h}^{+} - \Pi u_{h}^{+} \right\|_{K} \right. \\ &+ \left. R_{K,\mathrm{B}} \left\| z_{h}^{+} - \Pi z_{h}^{+} \right\|_{\partial K} + R_{K,\mathrm{B}}^{*} \left\| u_{h}^{+} - \Pi u_{h}^{+} \right\|_{\partial K} \right. \\ &+ \left. R_{K,\mathrm{D}} \left\| \mathbb{A} \nabla (z_{h}^{+} - \Pi z_{h}^{+}) \right\|_{\partial K} + R_{K,\mathrm{D}}^{*} \left\| \mathbb{A} \nabla (u_{h}^{+} - \Pi u_{h}^{+}) \right\|_{\partial K} \right), \end{split}$$

$$\begin{aligned} r_{K,\nabla}(u_h) &:= f + \Delta u_h, & R_{K,\nabla} = \|r_{K,\nabla}(u_h)\|_K \\ r_{K,B}(u_h) &:= \begin{cases} -\delta \llbracket u_h \rrbracket \mathbf{n} \cdot \mathbf{n}_K - \frac{1}{2} \llbracket \nabla u_h \rrbracket \cdot \mathbf{n} & \text{on } \partial K \setminus \partial \Omega, \\ \delta u_h & \text{on } \partial K \cap \partial \Omega, \end{cases} & R_{K,B} = \|r_{K,B}(u_h)\|_{\partial K} \\ r_{K,D}(u_h) &:= \begin{cases} \theta \frac{1}{2} \llbracket u_h \rrbracket & \text{on } \partial K \setminus \partial \Omega, \\ \theta u_h & \text{on } \partial K \cap \partial \Omega. \end{cases} & R_{K,D} = \|r_{K,D}(u_h)\|_{\partial K} \end{aligned}$$

Anisotropic goal-oriented error estimates

Using the anisotropy of the triangle { λ_K , σ_K , ϕ_K } and the anisotropy of $(u_h^+ - \Pi u_h^+)|_K$ denoted by { A_u , ρ_u , φ_u } we estimate

$$\left\|u_{h}^{+}-\Pi u_{h}^{+}\right\|_{K}^{2} \leq \frac{A_{u}^{2}\lambda_{K}^{2(p_{K}+2)}}{2p_{K}+4}\boldsymbol{G}(p_{K}+1,p_{K}+1,\rho_{u},\varphi_{u};\sigma_{K},\phi_{K}) =:\theta_{K,V}^{2},$$

etc. and then

$$\begin{split} \eta_{K}^{\mathbb{I}} &\leq \eta_{K}^{\mathbb{II}} := \frac{1}{2} (R_{K, \mathrm{V}} \theta_{K, \mathrm{V}}^{*} + R_{K, \mathrm{B}} \theta_{K, \mathrm{B}}^{*} + R_{K, \mathrm{D}} \theta_{K, \mathrm{D}}^{*} \\ &+ R_{K, \mathrm{V}}^{*} \theta_{K, \mathrm{V}} + R_{K, \mathrm{B}}^{*} \theta_{K, \mathrm{B}} + R_{K, \mathrm{D}}^{*} \theta_{K, \mathrm{D}}) \end{split}$$

Problem setting

 $-\Delta u = f \text{ in } \Omega$ $u = 0 \text{ on } \partial \Omega,$

in the cross shaped domain $\Omega = (-2, 2) \times (-1, 1) \cup (-1, 1) \times (-2, 2)$.

Figure: Adaptive computations for mesh adaptation steps m = 0, ..., 5, primal quantities.

Figure: Adaptive computations for mesh adaptation steps m = 0, ..., 5, adjoint quantities.

Figure: Convergence of the error estimate $\eta^{I} = \eta^{I}(u_{h}^{(n)}, z_{h}^{(n)})$ w.r.t. DoF for four adaptation strategies.

Figure: Comparison of the error estimates η^{I} and η^{II} with the actual error $J(u - u_h)$ for the *hp*-AMA method

Figure: The final *hp*-mesh obtained by the *hp*-AMA method, total view (left) and a $1000 \times \text{ zoom of the corner singularity at x = (1, 1) (right).}$

27

Problem setting

$$-
abla \cdot (arepsilon
abla u) +
abla \cdot (oldsymbol{b} u) + oldsymbol{c} u = 0$$

where

$$\varepsilon = \frac{\delta}{2} \left(1 - \tanh\left(\frac{(r - \frac{1}{4})(r + \frac{1}{4})}{\gamma}\right) \right), \qquad r = \sqrt{(x - 1/2)^2 + (y - 1/2)^2}$$

$$b = (2y^2 - 4x + 1, y + 1), \qquad c = -\nabla \cdot b.$$

Figure: Primal (left) and adjoint (center) solutions and the function ε (right).

Problem setting

$$-\nabla \cdot (\varepsilon \nabla u) + \nabla \cdot (\boldsymbol{b} u) + \boldsymbol{c} u = 0$$

Boundary conditions:

 $\bullet \quad u_D = \begin{cases} 1 & \text{if } x = 0 \text{ and } 0 < y \le 1, \\ \sin^2(\pi x) & \text{if } 0 \le x \le 1 \text{ and } y = 0, \\ e^{-50y^4} & \text{if } x = 1 \text{ and } 0 < y \le 1, \end{cases}$

• homogeneous Neumann if $0 \le x \le 1$ and y = 1.

Figure: Primal (left) and adjoint (center) solutions and the function ε (right).

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Problem setting

$$-
abla \cdot (arepsilon
abla u) +
abla \cdot (oldsymbol{b} u) + oldsymbol{c} u = 0$$

Target functional:

$$J(u) = \int_{0.25}^{0.625} u(x, 1) \, \mathrm{d}x$$

Figure: Primal (left) and adjoint (center) solutions and the function ε (right).

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Figure: Convergence of the error estimate $\eta^{I} = \eta^{I}(u_{h}^{(n)}, z_{h}^{(n)})$ w.r.t. DoF for three adaptation strategies.

Figure: Comparison of the error estimates η^{I} and η^{II} with the actual error $J(u - u_h)$ for the *hp*-AMA method

Nonlinear problems

Abstract nonlinear problem

Determine the value of the goal-functional

$$J(u) = \int_{\Omega} j_{\Omega}(u) \, \mathrm{d}x + \int_{\partial \Omega} j_{\Gamma}(u) \, \mathrm{d}S,$$

given that *u* solves

 $\mathcal{A}(u) = 0 \text{ in } \Omega, \qquad \mathcal{B}(u) = 0 \text{ on } \partial \Omega.$

Abstract discrete problem

Find $u_h \in V_h$ such that

$$a_h(u_h;\varphi_h)=0 \qquad \forall \varphi_h \in V_h.$$

Abstract nonlinear problem

Determine the value of the goal-functional

$$J(u) = \int_{\Omega} j_{\Omega}(u) \, \mathrm{d}x + \int_{\partial \Omega} j_{\Gamma}(u) \, \mathrm{d}S,$$

given that *u* solves

 $\mathcal{A}(u) = 0 \text{ in } \Omega, \qquad \mathcal{B}(u) = 0 \text{ on } \partial \Omega.$

Abstract discrete problem

Find $u_h \in V_h$ such that

$$a_h(u_h;\varphi_h)=0 \qquad \forall \varphi_h \in V_h.$$
Fréchet derivative

A function $f : V \to W$ is called *Fréchet differentiable* at $x \in V$ if there exist a continuous linear operator $f'[x] : V \to W$ such that

$$\lim_{\|h\|_{V}\to 0} \frac{\|f(x+h) - f(x) - f'[x](h)\|_{W}}{\|h\|_{V}} = 0.$$

Adjoint problem

Find a function $z \in V$ such that

 $(\mathcal{A}'[u])^* z = j'_{\Omega}[u] \quad \text{in } \Omega, \qquad (\mathcal{B}'[u])^* z = j'_{\Gamma}[u] \quad \text{on } \partial\Omega,$

Fréchet derivative

A function $f : V \to W$ is called *Fréchet differentiable* at $x \in V$ if there exist a continuous linear operator $f'[x] : V \to W$ such that

$$\lim_{h \parallel_{V} \to 0} \frac{\|f(x+h) - f(x) - f'[x](h)\|_{W}}{\|h\|_{V}} = 0.$$

Adjoint problem

Find a function $z \in V$ such that

 $(\mathcal{A}'[u])^* z = j'_{\Omega}[u] \quad \text{in } \Omega, \qquad (\mathcal{B}'[u])^* z = j'_{\Gamma}[u] \quad \text{on } \partial \Omega,$

Motivating experiment

Problem setting

$$-\varepsilon \nabla \cdot (|u|^{\gamma} \nabla u) + \nabla (\boldsymbol{b}u) = f \text{ in } \Omega = (0, 1)^{2},$$
$$u = g_{D} \text{ on } \Gamma_{D} = \{(0, x_{2}) \in \partial \Omega\},$$
$$\nabla \cdot u = g_{N} \text{ in } \Gamma_{N} = \partial \Omega \setminus \Gamma_{D},$$

where
$$\varepsilon = 10^{-2}$$
, $\boldsymbol{b} = (1, 0)^{\mathrm{T}}$, $\gamma \ge 0$.
Exact solution:
 $u = \arctan(-25(x_1 - 0.4)) + \frac{\pi}{2}$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Motivating experiment

Problem setting

Target functional:

$$J(u)=\frac{1}{|\Omega_J|}\int_{\Omega_J}u\,\mathrm{d}x$$

Adjoint problem:

$$-\varepsilon\nabla\cdot(|u|^{\gamma}\nabla z+\gamma|u|^{\gamma-1}\nabla uz)-\boldsymbol{b}\cdot\nabla z=\frac{1}{|\Omega_{J}|}\chi_{\Omega_{J}}.$$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Adjoint solution

(a) Linear case ($\gamma = 0$)

(b) Nonlinear case ($\gamma = 2$)

Discrete adjoint problem

Find a function $z_h \in V_h$ such that

$$a_h'[u_h](\psi_h, z_h) = J'[u_h](\psi_h) \qquad \forall \psi_h \in V_h.$$

Residuals

 $\begin{aligned} r_h(u_h)(\cdot) &= -\mathcal{A}(u_h; \cdot), \\ r_h^*(z_h)(\cdot) &= J'[u_h](\cdot) - \mathcal{A}'[u_h](\cdot, z_h) \end{aligned}$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Discrete adjoint problem

Find a function $z_h \in V_h$ such that

$$a_h'[u_h](\psi_h, z_h) = J'[u_h](\psi_h) \qquad \forall \psi_h \in V_h.$$

Residuals

$$\begin{aligned} r_h(u_h)(\cdot) &= -A(u_h; \cdot), \\ r_h^*(z_h)(\cdot) &= J'[u_h](\cdot) - A'[u_h](\cdot, z_h) \end{aligned}$$

Error identity for nonlinear problems

$$J(u) - J(u_h) = rac{1}{2}r_h(u_h)(z-\psi_h) + rac{1}{2}r_h^*(z_h)(u-\phi_h) + R_h^3
onumber \ orall \psi_h, \phi_h \in V_h,$$

where

$$\begin{aligned} r_h(u_h)(\cdot) &= -\mathcal{A}(u_h; \cdot), \\ r_h^*(z_h)(\cdot) &= J'[u_h](\cdot) - \mathcal{A}'[u_h](\cdot, z_h) \end{aligned}$$

and the remainder R_h^3 is cubic in the primal and adjoint errors

$$e = u - u_h, \quad e^* = z - z_h.$$

Nonlinear problems Inviscid compressible flow

Euler equations

$$\sum_{s=1}^{d} \frac{\partial \boldsymbol{f}_{s}(\boldsymbol{w})}{\partial \boldsymbol{x}_{s}} = 0, \quad \boldsymbol{f}_{s}(\boldsymbol{w}) = \begin{pmatrix} \rho \boldsymbol{v}_{s} & \boldsymbol{v}_{s} \\ \rho \boldsymbol{v}_{1} \boldsymbol{v}_{s} + \delta_{1s} \boldsymbol{p} \\ \vdots \\ \rho \boldsymbol{v}_{d} \boldsymbol{v}_{s} + \delta_{ds} \boldsymbol{p} \\ (\boldsymbol{E} + \boldsymbol{p}) \boldsymbol{v}_{s} \end{pmatrix}$$

with boundary conditions $\mathbf{v} \cdot \mathbf{n} = 0$ on Γ_W and proper boundary conditions on Γ_{IO} , [Dolejí, Feistauer, 2015].

Quantity of interest - drag or lift

$$J(\boldsymbol{w}) = \int_{\Gamma_{\boldsymbol{w}}} \mathbf{p}(\boldsymbol{w}) \boldsymbol{n} \cdot \vartheta \, \mathrm{d}\boldsymbol{S}, \quad \text{where } \mathbf{p} = (\gamma - 1)(\boldsymbol{E} - \rho |\boldsymbol{v}|^2 / 2),$$
$$\vartheta_d = \frac{1}{C_{\infty}} (\cos(\alpha), \sin(\alpha))^{\mathrm{T}} \quad \vartheta_l = \frac{1}{C_{\infty}} (-\sin(\alpha), \cos(\alpha))^{\mathrm{T}},$$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Nonlinear problems Inviscid compressible flow

Euler equations

$$\sum_{s=1}^{d} \frac{\partial \boldsymbol{f}_{s}(\boldsymbol{w})}{\partial \boldsymbol{x}_{s}} = 0, \quad \boldsymbol{f}_{s}(\boldsymbol{w}) = \begin{pmatrix} \rho \boldsymbol{v}_{s} & \boldsymbol{v}_{s} \\ \rho \boldsymbol{v}_{1} \boldsymbol{v}_{s} + \delta_{1s} \boldsymbol{p} \\ \vdots \\ \rho \boldsymbol{v}_{d} \boldsymbol{v}_{s} + \delta_{ds} \boldsymbol{p} \\ (\boldsymbol{E} + \boldsymbol{p}) \boldsymbol{v}_{s} \end{pmatrix}$$

with boundary conditions $\mathbf{v} \cdot \mathbf{n} = 0$ on Γ_W and proper boundary conditions on Γ_{IO} , [Dolejí, Feistauer, 2015].

Quantity of interest - drag or lift

$$J(\boldsymbol{w}) = \int_{\Gamma_{W}} \mathbf{p}(\boldsymbol{w}) n \cdot \vartheta \, \mathrm{d}S, \quad \text{where } \mathbf{p} = (\gamma - 1)(E - \rho |\boldsymbol{v}|^{2}/2),$$
$$\vartheta_{d} = \frac{1}{C_{\infty}} (\cos(\alpha), \sin(\alpha))^{\mathrm{T}} \quad \vartheta_{l} = \frac{1}{C_{\infty}} (-\sin(\alpha), \cos(\alpha))^{\mathrm{T}},$$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Discrete primal problem

We say that a function $\boldsymbol{w}_h \in \boldsymbol{S}_{h,p}$ is the discrete solution of the Euler equations, if

$$a_h(\boldsymbol{w}_h, \boldsymbol{\varphi}_h) = 0 \qquad orall \boldsymbol{\varphi}_h \in \boldsymbol{S}_{h, p},$$

where $a_h(\boldsymbol{w}, \boldsymbol{\varphi}) = -\sum_{K \in \mathcal{T}_h} \int_K \sum_{s=1}^d \boldsymbol{f}_s(\boldsymbol{w}) \cdot \frac{\partial \boldsymbol{\varphi}}{\partial x_s} \, \mathrm{d}x + \sum_{K \in \mathcal{T}_h} \int_{\partial K} \mathbf{H}(\boldsymbol{w}^{(+)}, \boldsymbol{w}^{(-)}, n) \cdot \boldsymbol{\varphi} \, \mathrm{d}S$

Discrete adjoint problem

Find $m{z}_h \in m{S}_{h,p}$: $a'_h[m{w}_h](m{arphi}_h, m{z}_h) = J'[m{w}_h](m{arphi}_h)$ $orall m{arphi}_h \in m{S}_{h,p}$, where

$$\begin{split} a_h'[w_h](\varphi_h, z_h) &= -\sum_{K \in \mathcal{T}_h} \int_K \sum_{s=1}^d f_s'[w_h](\varphi_h) \cdot \frac{\partial z_h}{\partial x_s} \, \mathrm{d}x \\ &+ \int_{\partial K} (\mathbb{H}_{w_h^{(+)}}(w_h)\varphi_h^{(+)} + \mathbb{H}_{w_h^{(-)}}(w_h)\varphi_h^{(-)}) \cdot z_h \, \, \mathrm{d}S. \end{split}$$

Discrete primal problem

We say that a function $\boldsymbol{w}_h \in \boldsymbol{S}_{h,p}$ is the discrete solution of the Euler equations, if

$$a_h(\boldsymbol{w}_h, \boldsymbol{arphi}_h) = 0 \qquad orall \boldsymbol{arphi}_h \in \boldsymbol{S}_{h,p},$$

where $a_h(\boldsymbol{w}, \boldsymbol{\varphi}) = -\sum_{K \in \mathcal{T}_h} \int_K \sum_{s=1}^d \boldsymbol{f}_s(\boldsymbol{w}) \cdot \frac{\partial \boldsymbol{\varphi}}{\partial x_s} \, \mathrm{d}x + \sum_{K \in \mathcal{T}_h} \int_{\partial K} \mathbf{H}(\boldsymbol{w}^{(+)}, \boldsymbol{w}^{(-)}, n) \cdot \boldsymbol{\varphi} \, \mathrm{d}S$

Discrete adjoint problem

 $\mbox{Find} \ \pmb{z}_h \in \pmb{S}_{h,p}: \quad \pmb{a}_h'[\pmb{w}_h](\pmb{\varphi}_h, \pmb{z}_h) = J'[\pmb{w}_h](\pmb{\varphi}_h) \qquad \forall \pmb{\varphi}_h \in \pmb{S}_{h,p}, \mbox{ where }$

$$\begin{split} \mathbf{a}_{h}'[\mathbf{w}_{h}](\boldsymbol{\varphi}_{h}, \mathbf{z}_{h}) &= -\sum_{K \in \mathcal{T}_{h}} \int_{K} \sum_{s=1}^{d} \mathbf{f}_{s}'[\mathbf{w}_{h}](\boldsymbol{\varphi}_{h}) \cdot \frac{\partial \mathbf{z}_{h}}{\partial \mathbf{x}_{s}} \, \mathrm{d}\mathbf{x} \\ &+ \int_{\partial K} (\mathbb{H}_{\mathbf{w}_{h}^{(+)}}(\mathbf{w}_{h}) \boldsymbol{\varphi}_{h}^{(+)} + \mathbb{H}_{\mathbf{w}_{h}^{(-)}}(\mathbf{w}_{h}) \boldsymbol{\varphi}_{h}^{(-)}) \cdot \mathbf{z}_{h} \, \, \mathrm{d}S. \end{split}$$

- boundary conditions in the discrete formulation
- adjoint consistency (depends on the b.c., $J \approx J_h$)
- approximation of $a_h'[w_h](\cdot, \cdot) \approx a_h^L(w_h; \cdot, \cdot)$
 - for definition of the linearized discrete adjoint problem
 - for solving the nonlinear primal algebraic problem (Newton-like method)
- anisotropic hp-mesh adaptation

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{II}} \leq \eta^{\mathrm{II}} \leq \sum_{K \in \mathcal{T}_h} \eta^{\mathrm{III}}_K$$

- boundary conditions in the discrete formulation
- adjoint consistency (depends on the b.c., $J \approx J_h$)
- approximation of $a_h'[\boldsymbol{w}_h](\cdot,\cdot) \approx \boldsymbol{a}_h^{\mathrm{L}}(\boldsymbol{w}_h;\cdot,\cdot)$
 - for definition of the linearized discrete adjoint problem
 - for solving the nonlinear primal algebraic problem (Newton-like method)

anisotropic hp-mesh adaptation

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{II}} \leq \eta^{\mathrm{II}} \leq \sum_{\mathcal{K} \in \mathcal{T}_h} \eta^{\mathrm{III}}_{\mathcal{K}}$$

- boundary conditions in the discrete formulation
- adjoint consistency (depends on the b.c., $J \approx J_h$)
- approximation of $a_h'[\boldsymbol{w}_h](\cdot, \cdot) \approx \boldsymbol{a}_h^{\mathrm{L}}(\boldsymbol{w}_h; \cdot, \cdot)$
 - for definition of the linearized discrete adjoint problem
 - for solving the nonlinear primal algebraic problem (Newton-like method)

anisotropic hp-mesh adaptation

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{I}} \leq \eta^{\mathrm{II}} \leq \sum_{K \in \mathcal{T}_h} \eta^{\mathrm{II}}_K$$

- boundary conditions in the discrete formulation
- adjoint consistency (depends on the b.c., $J \approx J_h$)
- approximation of $a_h'[\boldsymbol{w}_h](\cdot, \cdot) \approx \boldsymbol{a}_h^{\mathrm{L}}(\boldsymbol{w}_h; \cdot, \cdot)$
 - for definition of the linearized discrete adjoint problem
 - for solving the nonlinear primal algebraic problem (Newton-like method)
- anisotropic hp-mesh adaptation

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{II}} \leq \eta^{\mathrm{II}} \leq \sum_{K \in \mathcal{T}_h} \eta^{\mathrm{III}}_K$$

$$\begin{aligned} |J(\boldsymbol{w}) - J(\boldsymbol{w}_h)| &\approx \eta^{\mathrm{I}} \\ &:= \frac{1}{2} |r_h(\boldsymbol{w}_h)(\boldsymbol{z}_h^+ - \boldsymbol{\Pi} \boldsymbol{z}_h^+) + \frac{1}{2} r_h^*(\boldsymbol{w}_h, \boldsymbol{z}_h)(\boldsymbol{w}_h^+ - \boldsymbol{\Pi} \boldsymbol{w}_h^+)|, \end{aligned}$$

where

$$\begin{aligned} r_h(\boldsymbol{w}_h)(\boldsymbol{z}_h^+ - \Pi \boldsymbol{z}_h^+) &:= -a_h(\boldsymbol{w}_h; \boldsymbol{z}_h^+ - \Pi \boldsymbol{z}_h^+), \\ r_h^*(\boldsymbol{w}_h, \boldsymbol{z}_h)(\boldsymbol{w}_h^+ - \Pi \boldsymbol{w}_h^+) &:= J_h'[\boldsymbol{w}_h](\boldsymbol{w}_h^+ - \Pi \boldsymbol{w}_h^+) - \boldsymbol{a}_h^{\mathrm{L}}[\boldsymbol{w}_h](\boldsymbol{w}_h^+ - \Pi \boldsymbol{w}_h^+, \boldsymbol{z}_h) \end{aligned}$$

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them

Goal-oriented error estimates in residual form

$$|J(u) - J(u_h)| pprox \eta^{\mathrm{I}} \leq \sum_{K \in \mathcal{T}_h} \eta^{\mathrm{II}}_K$$

where

$$\eta_{K}^{\mathbb{I}}(\boldsymbol{w}_{h}, \boldsymbol{z}_{h}) = \frac{1}{2} \left(\sum_{i=1}^{m} R_{K,V}^{i} \left\| (\boldsymbol{z}_{h}^{+} - \Pi \boldsymbol{z}_{h}^{+})^{i} \right\|_{K} + R_{K,B}^{i} \left\| (\boldsymbol{z}_{h}^{+} - \Pi \boldsymbol{z}_{h}^{+})^{i} \right\|_{\partial K} \right. \\ \left. + R_{K,V}^{*,i} \left\| (\boldsymbol{w}_{h}^{+} - \Pi \boldsymbol{w}_{h}^{+})^{i} \right\|_{K} + R_{K,B}^{*,i} \left\| (\boldsymbol{w}_{h}^{+} - \Pi \boldsymbol{w}_{h}^{+})^{i} \right\|_{\partial K} \right) . \\ \left. R_{K,V}^{i} := \left\| \mathbf{R}_{K}^{i}(\boldsymbol{w}_{h}) \right\|_{K}, \quad R_{K,B}^{i} := \left\| \mathbf{r}_{K}^{i}(\boldsymbol{w}_{h}) \right\|_{\partial K} \\ \left. R_{K,V}^{*,i} := \left\| \mathbf{R}_{K}^{*,i}(\boldsymbol{w}_{h}, \boldsymbol{z}_{h}) \right\|_{K}, \quad R_{K,B}^{*,i} := \left\| \mathbf{r}_{K}^{*,i}(\boldsymbol{w}_{h}, \boldsymbol{z}_{h}) \right\|_{\partial K} \right.$$

Anisotropic goal-oriented error estimates

Using the anisotropy of the triangle $\{\lambda_K, \sigma_K, \phi_K\}$ and the anisotropy of $(\boldsymbol{w}_h^+ - \Pi \boldsymbol{w}_h^+)|_K$ we estimate

$$\left\| \left(\boldsymbol{w}_{h}^{+} - \boldsymbol{\Pi}\boldsymbol{w}_{h}^{+}\right)^{j} \right\|_{\boldsymbol{K}}^{2} \leq \underbrace{\frac{A_{u}^{2}\lambda_{K}^{2(p_{K}+2)}}{2p_{K}+4}\boldsymbol{G}(p_{K}+1,p_{K}+1,\rho_{u},\varphi_{u};\sigma_{K},\phi_{K})}_{\left(\boldsymbol{\theta}_{K,v}^{i}\right)^{2}}$$

etc. and then

$$\eta_{K}^{\mathbb{I}} \leq \eta_{K}^{\mathbb{II}} := \frac{1}{2} \left(\sum_{i=1}^{m} R_{K,V}^{i} \theta_{K,V}^{*,i} + R_{K,B}^{i} \theta_{K,B}^{*,i} + R_{K,V}^{*,i} \theta_{K,V}^{i} + R_{K,B}^{*,i} \theta_{K,B}^{i} \right).$$

Subsonic flow Problem setting

Problem setting

- NACA0012 airfoil
- Mach number M = 0.5,
- angle of attack $\alpha = 0.0^{\circ}$,
- exact value of drag: $c_D = 0.0$.

Figure: Initial computational mesh

Subsonic flow Adaptive computation

Figure: Decrease of the error and its estimates for anisotropic p = 2 and *hp*-mesh refinement for the drag coefficient.

Subsonic flow Adaptive computation

Figure: Refined hp-meshes 5th (left) 13th (right).

Problem setting

- NACA0012 airfoil
- Mach number M = 0.8,
- angle of attack $\alpha = 1.25^{\circ}$,
- ► target functional: c_D , c_L .

Drag coefficient

Transonic flow Adaptive computation

Drag coefficient

Drag coefficient

Lift coefficient

Transonic flow Adaptive computation

Lift coefficient

Lift coefficient

- goal-oriented error estimates for linear and nonlinear equations
- adjoint consistent discretizations
- approximation of the adjoint solution z
- error estimates including algebraic errors
- adaptive refinement driven by the quantity of interest (*hp*-anisotropic)
- application to Euler equations

Bibliography

[Bangerth and Rannacher, 2003] Bangerth, W. and Rannacher, R. (2003).

Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH Zürich.

[Dolejší and Feistauer, 2013] Dolejší, V. and Feistauer, M. (2015).

Discontinuous Galerkin Method Analysis and Applications to Compressible Flow. Springer Verlag, 2015

[Dolejší and Tichý, 2020] Dolejší, V. and Tichý, P. (2020).

On efficient numerical solution of linear algebraic systems arising in goal-oriented error estimates.

Journal of Scientific Computing, 83 (2020)

[Hartmann, 2007] Hartmann, R. (2007).

Adjoint consistency analysis of discontinuous galerkin discretizations. *SIAM Journal on Numerical Analysis*, 45(6):2671–2696.

[Hartmann, R. and Leicht, T. 2015] Hartmann, R. and Leicht, T. (2015).

Generalized adjoint consistent treatment of wall boundary conditions for com- pressible flows. *Journal of Computational Physics*, 300 (2015) 754778.

[Rannacher, R. and Vihharev, J., 2013] Rannacher, R. and Vihharev, J. (2013).

Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors.

Journal of Numerical Mathematics

Thank you for your attention!