Faculty of Mathematics and Physics,
Charles University

Goal-oriented a posteriori error estimates
and where to find them

PANM 20

Vit Dolejsi, Filip Roskovec

24. 6. 2020



Introduction

Error estimates

Error estimation

A priori error estimates A posteriori estimates
lu—unll < C(u)h? lu—unll < > ke, nk(Un)

/

Standard approach
based on the formu-
lation of the problem
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Goal-oriented estimates
error of target functional
J(u) = J(un) < ke, nx(Un)
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Quantity of interest

Target functional

» we are not interested in u itself, but in the quantity of interest J(u)
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Quantity of interest

Target functional

» we are not interested in u itself, but in the quantity of interest J(u)
» Examples:

» mean heat flux through the part of boundary (Nusselt number)
» regularized point value

» drag and lift coefficient in aerodynamics

» mean surface pressure of a body in an inviscid flow
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Quantity of interest

Target functional

» we are not interested in u itself, but in the quantity of interest J(u)
» Examples:

» mean heat flux through the part of boundary (Nusselt number)
» regularized point value

» drag and lift coefficient in aerodynamics

» mean surface pressure of a body in an inviscid flow

» J:V — R —target functional
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Quantity of interest

Target functional

» we are not interested in u itself, but in the quantity of interest J(u)
» Examples:

» mean heat flux through the part of boundary (Nusselt number)
» regularized point value

» drag and lift coefficient in aerodynamics

» mean surface pressure of a body in an inviscid flow

» J:V — R —target functional
» J(u) may be linear or nonlinear (usually for nonlinear problems)
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Motivating experiment

Linear case with dominant convection

Problem setting

Primal problem: —cAu+V - (bu)=0, b= (—X,Xi),c=10"°
Target functional J(u) = £ [¢ udx

Boundary conditions and primal solution

homogeneous Neumann BC
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Motivating experiment

Linear case with dominant convection

Problem setting

Primal problem: —cAu+V-(bu)=0, b= (—x,X),e=10"°

Target functional J(u) = £ [¢ udx

Adaptive refinement based on a standard estimates
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Motivating experiment

Linear case with dominant convection

Problem setting
Primal problem: —cAu+V-(bu)=0, b= (—x,X),e=10"°
Adjoint problem: —cAz —b-Vz = xg, where E C Q.

Primal and adjoint solutions

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them



Motivating experiment

Linear case with dominant convection

Problem setting

Primal problem: —cAu+V - (bu) =0, b= (—x2,Xi),e=10"°

Adjoint problem: —cAz —-b-Vz= xg, where E C Q.

Adaptive refinement based on goal-oriented algorithm

"y 15000008 ——
‘insideSubmesh.gnu” ——
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Motivating experiment

Linear case with dominant convection

Problem setting
Primal problem: —cAu+V-(bu)=0, b= (—x,X),e=10"°
Adjoint problem: —cAz—b-Vz = xg, where E C Q.

Comparison of the resulting solutions

00008 ——

" U_150-00006 —— "0 1s0-
‘nsideSTbmesh.gnu'
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Motivating experiment

Linear case with dominant convection

Problem setting
Primal problem: —cAu+V - (bu)=0, b= (—x2,X),e=10"°
Adjoint problem: —ecAz —b-Vz= xg, where E C Q.

Comparison of resulting meshes
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Linear case

Standard DWR method

Poisson equation
Find a function u such that

—Au = f inQ,
u 0 onon.
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Linear case

Weak formulation

Primal weak formulation
Find u € H} () such that

a(u,0) = L) Vo€ H(Q)

where a(u, ¢) = (Vu,Vo)q and 4(¢) = (f, p)a.
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Linear case

Weak formulation

Primal weak formulation
Find u € H} () such that

a(u,0) = L) Vo€ H(Q)

where a(u, ¢) = (Vu,Vo)q and 4(¢) = (f, p)a.

Adjoint weak formulation
Find z € H{ () such that

a(¢,z) = J(¢) Voe H(Q)
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Linear case

FEM discrezization

Primal discrete problem
Find uy € Vi := {v € C(Q); v|, € PP(K), VK € Ts} such that

a(un,on) = £(pn) Yeon € Vh
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Linear case

FEM discrezization

Primal discrete problem
Find uy € Vi := {v € C(Q); v|, € PP(K), VK € Ts} such that

a(un,on) = £(pn) Yeon € Vh

Adjoint discrete problem

Find z, € V}, such that

a(on,zn) = J(én) Vén € Vp.
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Linear case

Abstract Goal-oriented estimates

Error identity

Jw)—Jd(up) = J(u—up)=alu—up2)
= alu—unz— pp)
= f(z—n) — a(un, 2 — ¢n)
= I’h(Uh)(Z — 99/7) Vﬁph € Vh
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Linear case

Abstract Goal-oriented estimates

Error identity

Jw)—Jd(up) = J(u—up)=alu—up2)
= alu—unz— pp)
= f(z—n) — alun,z — ¢n)
= I’h(Uh)(Z — 99/7) V(ph € Vh

Adjoint error identity

U —¢n) — a(u — en, zn)
=:r5(2n)(U—@n) Yeon € Vp

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them



Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
> J(u—up)=rm(up)(z—Nz), N:V =V,
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Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
> J(u—up)=rm(up)(z—Nz), N:V =V,
> z has to be approximated numerically by z;'
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Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
» J(u—up)=rm(up)(z—Nz), N:V-=V,
> z has to be approximated numerically by z;,
» z! must be in a richer space than V}:
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Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
» J(u—up)=rm(up)(z—Nz), N:V-=V,
> z has to be approximated numerically by z;,
» z! must be in a richer space than V}:

1. bigger problem: z € V," : a(on, z7) = J(pn) Ven € Vi,
2. same sized problem + reconstruction z;” = %(zj) € V,©
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Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
> J(u—up)=r(up)(z—Nz), N:V =V,
> Z has to be approximated numerically by z;'",
>z must be in a richer space than Vj:
1. bigger problem: z; € V,\ : a(en, z;) = J(pn) Veon € V',
2. same sized problem + reconstruction z; = %(z,) € V,©

Computable goal-oriented error estimate

—_

[J(u) = I(un) ~ 0" = 5 (s (Un, 2n) + 03 (Un, Zn)

where

ns = ra(un)(z — Nzl), ng = rp(zn)(uy — Nuy).
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Linear case

Computable goal-oriented error estimates

Estimate of the discretization error J(u — up)
» J(u—up)=rm(up)(z—Nz), N:V =V,
> Z has to be approximated numerically by z;,
> z,f must be in a richer space than V:

1. bigger problem: z € V," : a(on, z7) = J(pn) Ven € Vi,
2. same sized problem + reconstruction z; = %(zj) € V,"

Computable goal-oriented error estimate

due to z ~ z, u ~ uj the estimate is not guaranteed upper bound
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Focus of our work

» discontinuous Galerkin method
» adjoint consistent discretization
» algebraic errors

» hp-anisotropic mesh adaptation
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Discontinuous Galerkin discretization

Primal discrete problem
Find up € S := {v € L3(Q); v|, € PP(K), VK € Tp} such that

an(Un, on) = apa(un, ) + J5 (un, @) = (f,on) Ven e S,
where .
aoo(tsp) = 3 [ Vu-Vodx- 3 [(vu)-nle]
K /K rez, /T

+ ©(Vy)-n[u]) dS, © € {-1,0,1}

o L Cw
Hlug) = ;/ [l S, o] = 7.
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Discontinuous Galerkin discretization

Primal discrete problem
Find up € S := {v € L3(Q); v|, € PP(K), VK € Tp} such that

an(Un, on) = apa(un, ) + J5 (un, @) = (f,on) Ven e S,
where .
aoo(tsp) = 3 [ Vu-Vodx- 3 [(vu)-nle]
Kk 'K rez,’’

+ ©(Vy)-n[u]) dS, © e {-1,0,1}

o L Cw
%mm=—%ﬁHMﬂw7h—m~

Adjoint discrete problem

Find z, € S} such that
o)
an(on,zn) = J(¢n) Vone Sy.




Consistency of the discretization

Primal continuous problem
a(u,p) =L(p) VoeV

Aouaisisuod

Primal discrete problem
an(Un, n) = ln(en) Yen € S
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Consistency of the discretization

Primal continuous problem Adjoint continuous problem
a(u,9) = l(g) VpeV T alg2) = J9) VoeV
:
g
Primal discrete problem Adjoint discrete problem

an(Un, on) = La(en) Ven € S an(én, zn) = Jn(dn) Veén € Spy
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Consistency of the discretization

Primal continuous problem Adjoint continuous problem
a(u,9) = l(g) VpeV T ag.2) = J(¢) Vo eV

Aous)sisuod
Aous)sisuoo juiolpe

Primal discrete problem Adjoint discrete problem
an(Un, on) = Ca(en) Veon € Sp an(dn, zn) = Jn(dn) Von € Spy
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Adjoint Consistency

» All three variants of DG discretization (SIPG,NIPG,IIPG) are
consistent.

/w Vzdx— > / (Vo) - n[z] + ds.

KeTh rezp
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Adjoint Consistency

» All three variants of DG discretization (SIPG,NIPG,IIPG) are

consistent.

» Only the symmetric variant (SIPG) of DG discretization is adjoint
consistent.
Z/w-wdx— > [ (Vo) - n[z] + ds.
KeTy K resp T
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Adjoint Consistency

» All three variants of DG discretization (SIPG,NIPG,IIPG) are
consistent.

» Only the symmetric variant (SIPG) of DG discretization is adjoint
consistent.

» Problematic term in the discretization of the diffusive term:
> | Vo-Vzdx— Y /(Vgp) -n[z] +6(Vz) - nf¢] dS.

KeTy K rezpp /"
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Adjoint Consistency

» All three variants of DG discretization (SIPG,NIPG,IIPG) are
consistent.

» Only the symmetric variant (SIPG) of DG discretization is adjoint
consistent.

» Problematic term in the discretization of the diffusive term:
> | Vo-Vzdx— Y /(Vgp) -n[z] + 6 (VZz) - n¢] dS.

KeTy K reFpo

Poisson problem
—Au="FfinQ=(0,1)? Ul,g =0,

with f such that: v =16x(1 — x)y(1 — y).
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Adjoint Consistency

» All three variants of DG discretization (SIPG,NIPG,IIPG) are
consistent.

» Only the symmetric variant (SIPG) of DG discretization is adjoint
consistent.

» Problematic term in the discretization of the diffusive term:
> | Vo-Vzdx— Y /(Vgp) -n[z] + 6 (VZz) - n¢] dS.

KeTy K reFpo

Poisson problem

—Au="FfinQ=(0,1)? Ul,g =0,

with f such that: v =16x(1 — x)y(1 — y).
Quantity of interest:  J(u) = [,fudx = z=u
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Adjoint Consistency

Poisson problem

Figure: SIPG
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Algebraic errors

Practically we do not have up, but only u,’§, which is also suffering from
algebraic errors. That leads to violation of the Galerkin orthogonality,
i.e. an(u—Uf,pn) #0, ¢ne Sh.
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Algebraic errors

Practically we do not have up, but only u,’§, which is also suffering from
algebraic errors. That leads to violation of the Galerkin orthogonality,
i.e. an(u—Uf,pn) #0, ¢ne Sh.

Two ways of splitting the error

Ju—uf) = alu—uf,z)=alu—uf,z-zf+a(u—uf,zf)
= (h(z— z5) — a(up, z — Z5) + En(2h) — a(upy, Zf)
~  m(up)(Zn — 2h) + m(up)(2h) -

disc. error alg. error

Jw—uf) = J(u—up)+ J(up— uf)
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BiCG and goal-oriented estimates

Algebraic representation of the discrete problem

an(Un, on) = Cn(n), an(¥n, zn) = J(n) Yen,vn € Sh
[}
Ax=b ATy=c
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BiCG and goal-oriented estimates

Algebraic representation of the discrete problem

an(Un, on) = Cn(n), an(¥n, zn) = J(n) Yen,vn € Sh
[}
Ax=b ATy=c

Biconjugate gradient method (BiCG)

» BiCG is a Krylov subspace method using short recurrences for
solving altogether both systems Ax = b, ATy = ¢

» In each iteration updates approximations xi, yx using coefficients
ak, Bk and vectors rg, Sk, Pk, k-
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BiCG and goal-oriented estimates

Estimate of the algebraic error

J(up) = cTA b =¢P + 8+ sTA ',

k—1
where £ = cxo + yg ro, §¢ = 2150 s
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BiCG and goal-oriented estimates

Estimate of the algebraic error

J(up) =cTA " b=¢P + B+ sfAn,
P_ T T, ¢B_ k=1 T,
where £&" = ¢ xo + ¥y fo, £ = D_i_p @iS; fi- Then

J(Up) — J(UR) = &Ry — &R + Sk A i = R, — &7
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BiCG and goal-oriented estimates

Estimate of the algebraic error

J(up) =cTATb=¢P + E + sf A,

k—1
where ¢P = cTxo + yg ro, €8 = Y"1y «istri. Then

J(Up) — J(UR) = &Ry — &R + Sk A i = R, — &7

o-stopping criterion [Dolejsi and Tichy, 2020]

max(oa k. aj"k) < caw Where w > 0 is given tolerance and

oak = €€, — &1+ 1Yk el ~ [J(un — up)l + Irn(us)(25)],

)
* * (K k
Th = |Ekry — K|+ Sk Xk| = [€n(2n — Z5)| + |17 (28) (up)]
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hp-anisotropic mesh adaptation

Introduction

Construct an anisotropic hp-mesh such that
» the error estimate »' is under the given tolerance
» the number of Degrees of Freedom (DoF) is minimal
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hp-anisotropic mesh adaptation

Introduction

Construct an anisotropic hp-mesh such that
» the error estimate »' is under the given tolerance
» the number of Degrees of Freedom (DoF) is minimal

hp-anisotropic mesh adaptation

We optimize
1. size of each triangle K (adaptive)
2. shape of each triangle (anisotropic)
3. local polynomial approximation degree (hp-)
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hp-anisotropic mesh adaptation

Introduction

Anisotropic mesh adaptation

Each element of the mesh should have optimal size and shape.
Anisotropy of triangle is given by the triplet {\x, ok, ¢k }:

> size AK = \//K,1IK,21
» ratio oK = \/IK’Q//K’-],

» orientation ¢k € [0, )
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hp-anisotropic mesh adaptation

Introduction

Anisotropic mesh adaptation

Each element of the mesh should have optimal size and shape.
Anisotropy of triangle is given by the triplet {\x, ok, ¢k }:

> size AK = \//K,1IK,21
» ratio oK = \/IK’Q//K’-],

» orientation ¢k € [0, )

hp-mesh adaptation

Each element K has its own pol. degree approximation pg.
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hp-anisotropic mesh adaptation

Goal-oriented error estimates in residual form

Goal-oriented error estimates in residual form

[J(u) = J(un)l =" < Y

KeTh
where
H-fl(F{ Hz’ 7I'Iz‘H + R; Hu‘ fl'lu’H
Nk o K,V |[4h h i« K,V ||Yh h |k
+ Rrs Hz,; — Nz, HOK +FAm Hu,; - N HOK
+ R 4V - nz)| | +Rip AV — e ),
rk, v (up) :==f + Aup, Rk v = Ik, v (un)ll
_ J=6lunln- nx — 3[Vus] - n on oK \ 6Q, B
rk,B(Un) = {Mn on 0K 1 09, Rk.B = [Irk,B(Un)ll 5
61 [un] on 0K \ 0%,
Ik, p(Un) = {95,, on 8K M 99, Ri.p = lIrc,p(un)ll 55
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hp-anisotropic mesh adaptation

Anisotropic goal-oriented error estimates

Anisotropic goal-oriented error estimates

Using the anisotropy of the triangle {\k, ok, ¢x} and the anisotropy
of (uif — MNu)|k denoted by {Ay, pu, pu} we estimate

2 2
ALZJ/\K(PK+ )

ATl 1 1 Lok, $K) = 0
2pK+4 G(pK+ 7PK+ 7pU7SDUvO-K/¢K) 9K,V’

g — Mo |[% <
etc. and then

1 * * *
Nk < Nk = E(RK-,V()K,V + Rk B0k 5 + Rk, pOk b

+R;€_’V9K,V A R;?’BQK,B aF R?(,DQK,D)
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Anisotropic hp-mesh adaptation algorithm

[ Solve primal and adjoint problems ]

compute up € S and z, € S
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compute up € S and z, € S

L

[ Reconstruct discrete solutions ]

[ Solve primal and adjoint problems ]

compute v € 8P and z € SP*'
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compute up € S and z, € S

L

[ Reconstruct discrete solutions ]

[ Solve primal and adjoint problems ]

compute v € 8P and z € SP*'

L

[ Evaluate " and 7} ]

IF n' < TOL then STOP;
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compute up € S and z, € S

L

[ Reconstruct discrete solutions ]

compute v € 8P and z € SP*'

Evaluate »' and 7}
IF n' < TOL then STOP;

[ Solve primal and adjoint problems ]

Optimize element shapes
Foreach K € Tp, based on nj
1. set better element size Ak
2. set better element shape ¢y, 5«
3. set better element pol. degree px

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them



Anisotropic hp-mesh adaptation algorithm

compute up € S and z, € S

L

[ Reconstruct discrete solutions ]

compute v € 8P and z € SP*'

Evaluate »' and 7}
IF n' < TOL then STOP;

Y

Optimize element shapes
Foreach K € Tp, based on nj

[ Solve primal and adjoint problems ]

Generate new mesh
1. set better element size g from the set of quintets {xk, Ax, 6k, dx, Px},

2. set better element shape ¢k, Gk generate a new hp-mesh 7,77 = {70 prity

3. set better element pol. degree px
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Poisson problem on cross-shaped domain

Numerical experiment

Problem setting

—Au="finQ
u=0o0n o9,

in the cross shaped domain Q = (—2,2) x (—1,1)U(-1,1) x (-2,2).
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Poisson problem on cross-shaped domain

Algebraic error decrease

() = T, —— [Mageml =yl r ——

Zamal = ) = I )| —— (E3) := BER1 ~ lampl - - &- -
1e+00 by

\ o Q

I

AT N
nr\w\‘i\* i \*\ :

L | & |5 - o
adapt. level =1 m= \2 = m :\3 5 h=4 = mEs
0 100 200 300 400 500

Figure: Adaptive computations for mesh adaptation steps m=0,...,5,
primal quantities.
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Poisson problem on cross-shaped domain

Algebraic error decrease

e —
123 i) = 16Gm) = €2, )| —— (E3) := 1668 ~ Wams] - - &--
1e+00

. J\Tw%i‘%&%

Y u\
b :

T
I ol = 187 20] ——

le-05

le-10

*

3 E= R
wj@-"" "
\

\ 9
le-15 \ o ‘
| | R | .
adapt. level :q m=1 m:\Zm m:\SE m=4 8
0 100 200 300 400 500 600

Figure: Adaptive computations for mesh adaptation steps m=0,...,5,
adjoint quantities.
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Poisson problem on cross-shaped domain

Adaptive computation

le-02 - T T T T T

i hp-AMAs2 ——

, hp-IMA —x— |
le-03 h-AMA  —s—

[ hp-ideal —a— |
le-04 L%

RN
» %\X\ |
1e-07 | N%Q > <

le-08 | %-

S X

error estimate 7!

le-09 L
5 10 15 20 25 30 35 40 45 50
DoF!/3

Figure: Convergence of the error estimate n' = '(u!”, ™) w.r.t. DoF for
four adaptation strategies.
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Poisson problem on cross-shaped domain

Adaptive computation

le-02 ¢ T T T q
r (= up)] —— 1

\ 771 ]

A

le-03 |

i \\K nII
le-04 |

g \&

g le-05 i %

2 1e-06 |

2 * \'\\

5 1007 | \ ]

E N |
1e-08 i \, 7
le-09 | ]

5 10 15 20 25 30
DoF!/3

Figure: Comparison of the error estimates n' and n™ with the actual error
J(u — up) for the hp-AMA method
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Poisson problem on cross-shaped domain

Adaptive computation

p2
|_BJ

Figure: The final hp-mesh obtained by the hp-AMA method, total view (left)
and a 1000 x zoom of the corner singularity at x = (1, 1) (right).
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Mixed hyperbolic elliptic problem

Numerical experiment

Problem setting

-V .- (eVu)+V-(bu)+cu=0

Figure: Primal (left) and adjoint (center) solutions and the function e (right).
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Mixed hyperbolic elliptic problem

Numerical experiment

Problem setting

-V .- (eVu)+V-(bu)+cu=0

Boundary conditions:
1 ifx=0and0<y<1,
> up = <{sin(rx) f0O<x<1landy=0,
e 5% jfx=1and0<y<1,
» homogeneous Neumannif0 < x <1and y = 1.

Figure: Primal (left) and adjoint (center) solutions and the function « (right).
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Mixed hyperbolic elliptic problem

Numerical experiment

Problem setting

-V .- (eVu)+V-(bu)+cu=0

Target functional:

Figure: Primal (left) and adjoint (center) solutions and the function e (right).
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Mixed hyperbolic elliptic problem

Numerical experiment
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Figure: Convergence of the error estimate n' = '(u!”, ™) w.r.t. DoF for
three adaptation strategies.
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Mixed hyperbolic elliptic problem

Numerical experiment
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Figure: Comparison of the error estimates n' and n™ with the actual error
J(u — up) for the hp-AMA method
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Mixed hyperbolic elliptic problem

Numerical experiment

0.0E+00 5.0E-01 1.0E+00
Figure: The final hp-mesh obtained by the hp-AMA method.
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Nonlinear problems



Nonlinear problems

Abstract nonlinear problem
Determine the value of the goal-functional

J(u) = /Q (@) dx+ [ ji(w) as.

given that u solves

A(u) =0in Q, B(u) = 0 on 99.
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Nonlinear problems

Abstract nonlinear problem
Determine the value of the goal-functional

J(u) = /Q (@) dx+ [ ji(w) as.

given that u solves

A(u) =0in Q, B(u) = 0 on 99.

Abstract discrete problem

Find un € V4 such that

an(Uun; on) =0  Vop € V.
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Abstract adjoint problem

Fréchet derivative

A function f: V — W is called Fréchet differentiable at x € V if there
exist a continuous linear operator f'[x] : V — W such that

If(x +h) = F(x) = FIXI(M)llw _

i 0.
], —0 Al
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Abstract adjoint problem

Fréchet derivative

A function f: V — W is called Fréchet differentiable at x € V if there
exist a continuous linear operator f'[x] : V — W such that

If(x +h) = F(x) = FIXI(M)llw _

|
], —0 Al

Adjoint problem

Find a function z € V such that

0.

(A[d)z=jplu] inQ  (Bul)'z=ji[u] onoQ,
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Motivating experiment

Problem setting

—eV - (Ju]"Vu) + V(bu) = fin Q = (0,1)2,
u=gponTlp={(0,x) € 00},
V.-u= an in My = 8Q\I'D,

where e = 1072, b= (1,0)T, v > 0.
Exact solution: -
u = arctan(—25(xy — 0.4)) + >
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Motivating experiment

Problem setting
Target functional:

Adjoint problem:

—eV-(JU'VZ+Au|""'Vuz) - b-Vz= —xq,
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Adjoint solution




Discrete adjoint problem

Discrete adjoint problem

Find a function z, € V}, such that

an'[un](¥n, zn) = J'[un](¥n) Vi € Vh.
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Discrete adjoint problem

Discrete adjoint problem

Find a function z, € V}, such that

an'[un](¥n, zn) = J'[un](¥n) Vi € Vh.

r(un)(-) = —A(Un; ),
rn(zn)(-) = J'[un](-) — A'lun(-, zn)
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Goal-oriented error estimate

Error identity for nonlinear problems

() — J(un) = SIH(Un)(Z — )+ T3 (20) (s~ 6n) +
v’(/)/% ¢h € Vh7

where
rm(un)(-) = —A(Un; ),
rn(zn)(-) = J'[un](-) — A'lun] (-, zn)

and the remainder Fm‘ﬁ is cubic in the primal and adjoint errors

e=u—up €e"'=z-z,.
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Nonlinear problems

Inviscid compressible flow

Euler equations

PVs
pV1Vs + O1sp

d
Ofs(w)
— f —
52:1: axs 0’ S(W)

pPVdVs + 6dsp
(E + p)Vs

with boundary conditions v - n =0 on 'y and proper boundary
conditions on T o, [Doleji, Feistauer, 2015].
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Nonlinear problems

Inviscid compressible flow

Euler equations

PVs
pV1Vs + O1sp

d
Z OT:Aw) =0, fs(w)= E
O0Xs :
el pPVdVs + 6dsp

(E +p)vs

with boundary conditions v - n =0 on 'y and proper boundary
conditions on T o, [Doleji, Feistauer, 2015].

Quantity of interest - drag or lift

Jw) = [ p(wn-0 S, wherep = (1~ 1)(E - plv?/2)

Tw

T

Vg = 1—(cos(a),sin(oz))T v = (—sin(a),cos(a)) ",

Coo COO
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DG discretization

Discrete primal problem

We say that a function wy, € Sy, is the discrete solution of the Euler
equations, if

an(Wh, pp) =0 Voo € Shp,

8 _
where an(wW, @) = — Sxer, [i >S9, fo(w) - d—fg dx + er, Jox Hw), w=) n). o dS
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DG discretization

Discrete primal problem

We say that a function wy, € Sy, is the discrete solution of the Euler
equations, if

an(Wh, pp) =0 Voo € Shp,

where ap(w, @) = — ZKETh Jie 20, fo(w) - 3—;’5’ dx + ZKeTh N Hw), w=) n). o dS

Discrete adjoint problem
Find z,, € Sh,p : a;l[Wh](gDh,Zh) = J/[Wh](goh) V(ph € Sh,p, where

ap[whl(ep 2n) = — > / Zf [Whl(ep) -

KETh s=1

—+ / (H ( )(Wh)Lp(}) —+ ]H. (Wh)(pgf)) - Zp dS.
J oK h h
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Nonlinear problems

Main focus of our work

Main focus

» boundary conditions in the discrete formulation
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Nonlinear problems

Main focus of our work

Main focus

» boundary conditions in the discrete formulation
» adjoint consistency (depends on the b.c., J ~ Jp)
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Nonlinear problems

Main focus of our work

Main focus

» boundary conditions in the discrete formulation
» adjoint consistency (depends on the b.c., J ~ J;)
» approximation of ay'[wp](-,-) ~ aj(Wh; -, -)
» for definition of the linearized discrete adjoint problem

» for solving the nonlinear primal algebraic problem (Newton-like
method)
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Nonlinear problems

Main focus of our work

Main focus

» boundary conditions in the discrete formulation
» adjoint consistency (depends on the b.c., J ~ J;)
» approximation of ay'[wp](-,-) ~ aj(Wh; -, -)
» for definition of the linearized discrete adjoint problem

» for solving the nonlinear primal algebraic problem (Newton-like
method)

» anisotropic hp-mesh adaptation

[J(u) = J(up) =0t <" < > nk
KeTh
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Goal oriented error estimates

Standard goal-oriented error estimates

|J(w) — J(wp)| ~ 7'
1 1,
= élfh(Wh)(Zﬁ - Nzj) + éfh(WhaZh)(Wﬁ —Nwy)l,

where

rm(wy)(2) — Nz}p) = —an(wp; 25 — Nz},

ry (Wh, 2n)(Wy — W) = Ji[wal(wy — Nw}) — &y (Whl(wy — Nw}, 2h)
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Goal oriented error estimates

Goal-oriented error estimates in residual form

J(u) — J(up)l =0t < > ik
KeTh

where

1 moo .
M (Wh, 20) = 3 <§ Riy @ - nzy)|
=]

P Ri.5 ||(Z;r —Nzy)

oK

R ” +_n +i” R H +_n +1H )
+ Ry ||(wh wy) « T kB (wh, W) HK)

b= [l = ],

Ry = ||Ri‘wn 20 A = [riciown, z0)] |,
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hp-anisotropic mesh adaptation

Anisotropic goal-oriented error estimates

Anisotropic goal-oriented error estimates

Using the anisotropy of the triangle {\x, ok, ¢k} and the anisotropy
of (w}, — Nw})|x we estimate

lws — i < 22"

= WG(pK+ 1,0k + 1, pu, Yui ok, Pk)

(O x)?

etc. and then

Mk <K = 2 (Z Ric vOK'y + B s0k's + ROk v + RK’,IBQKB> .
i=1
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Subsonic flow

Problem setting

Problem setting

» NACAO0012 airfoil

» Mach number M = 0.5,

» angle of attack o = 0.0°,

» exact value of drag: ¢p = 0.0.

Figure: Initial computational mesh
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Subsonic flow

Adaptive computation

1e-02 : ; : le-02 : ; :
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1 I
le-04 TWnze) —>— 1 o nWhazn) —*— |
le-05 \ le-05
\
N
le-06 " le-06 \i\y
ey
le-07 le-07
1e-08 le-08
20 30 40 50 60 70 20 30 40 50 60 70

DoF'/3

DoF!'/3

Figure: Decrease of the error and its estimates for anisotropic p = 2 and
hp-mesh refinement for the drag coefficient.
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Subsonic flow

Adaptive computation

ST .,
o o)
N[ PEERRAS/

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure: Refined hp-meshes 5th (left) 13th (right).

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them



Transonic flow

Adaptive computation

Problem setting
» NACAO0012 airfoil
» Mach number M = 0.8,
» angle of attack oo = 1.25°,
» target functional: cp, c;.
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Transonic flow

Adaptive computation

04 1.50 o 5.0
125 25
0.2 1.00 o2 0.0
0.75 E 25
00 0.0 . R
0.50 — -5.0
_02 025 5 -7.5
T T T T T T T T 0.00 -10.0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 12
(a) First component of wy,. (b) First component of zp,.
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Transonic flow

Adaptive computation

Drag coefficient

N 8
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g ‘
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Figure: Final hp-mesh.

Filip Roskovec | Goal-oriented a posteriori error estimates and where to find them



Transonic flow

Adaptive computation

Drag coefficient

1e+00 , [Jowp) — Jw)] ————

T'Wh, z) —>—
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le-02 L
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Figure: Error decrease.
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Transonic flow

Adaptive computation

Lift coefficie

061 40
!
0.4 i 20
0.21 0
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Figure: First component of the adjoint solution zj.
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Transonic flow

Adaptive computation

=\ =
XN
o<

Figure: Final hp-mesh.
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Transonic flow

Adaptive computation

Lift coefficient

1e+00 | Wows) = Jw)| ——
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Figure: Error decrease.
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Summary

goal-oriented error estimates for linear and nonlinear equations
adjoint consistent discretizations

approximation of the adjoint solution z

error estimates including algebraic errors

adaptive refinement driven by the quantity of interest
(hp-anisotropic)

application to Euler equations

vvyYVvyVvyy

v
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Thank you for your attention!
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