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1. Motivation

Accurate modelling of problems of structural dynamics,
wave propagation and contact-impact tasks by advanced
methods in the finite element method in dynamics.
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2. Governing equations for elastodynamic prob-
lems, Hamilton’s principle in elastodynamic
problems



Governing equations for elastodynamic problem

Strong form:
divσ + b = ρü in Ω× [t0, T ]

u = û on ΓD × [t0, T ]

n · σ = t̂ on ΓN × [t0, T ]

u
(
x, t0

)
= u0 (x) for x ∈ Ω

u̇
(
x, t0

)
= u̇0 (x) for x ∈ Ω

the Hooke’s law and the infinitesimal strain tensor:

σ = C : ε, ε =
1

2

[
(gradu)T + gradu

]
ui - the component of displacement vector u(x, t);
x ∈ Ω - the position vector;
Ω - the domain of interest with the boundary Γ
σij - the Cauchy stress tensor (symmetric tensor); εkl - the infinitesimal strain tensor;
ρ - mass density;
bi - the component of volume (body) intensity vector b;
ni - the component of the outward normal vector n on Γ;
ûi - the component of prescribed boundary displacement vector g;
t̂i - the component of prescribed traction vector t;
u0i and u̇0i - the components of the initial displacement and velocity fields.

Linear hyperbolic PDE system 15 unknown fields.



Hamilton’s principle in dynamic problems

- the principle of stationary action of dynamic problems

δ

∫ t2

t1

(T (u̇)− (U(u)−W)) dt = 0

T (u̇) - Kinetic energy of the body

T (u̇) =

∫
Ω

1

2
ρu̇ · u̇ dV

U(u) - Strain energy of the body

U (u) =

∫
Ω

1

2
σ : ε dV

W - Work of external forces on the body

W (u) =

∫
Ω

u · b dV +

∫
ΓN

u · t̂ dS



3. Finite element method in dynamics



FEM recapitulation

Approximation of displacement field via shape functions N

uh = N q, δuh = N δq

where q is vector of generalized nodal quantities (displacements/rotations, etc.).

Approximation of velocity and acceleration fields

u̇h = N q̇ üh = N q̈

Infinitesimal strain tensor

ε = Duh,

where D is the differential operator. Then

ε = DN q = B q

where B is the strain-displacement matrix. In elasticity problems, stress is given as

σ = E ε

where E is the elasticity matrix.



FEM recapitulation

Energy balance (principle of virtual work):∫
Ω

δuT %ü dΩ +

∫
Ω

δεT σ dΩ =

∫
Ω

δuT b dΩ +

∫
ΓN

δuT t dΓ

Using discretization of kinematic quantities we have

δqT
[∫

Ω

%NTNq̈ dΩ +

∫
Ω

BT σ dΩ−
∫

Ω

NT b dΩ−
∫

ΓN

NT t dΓ

]
= 0.

The previous equation should be valid for an arbitrary δq respecting Dirichlet bound-

ary conditions and, then the discretized equations of motion have the form

Mq̈ = f ext − f int



FEM recapitulation

Discretized equations of motion:

Mq̈ = f ext − f int

Consistent mass matrix:

M =

∫
Ω

%NTN dΩ

Vector of internal forces:

f int =

∫
Ω

BT σ dΩ

Vector of external forces:

f ext =

∫
Ω

NT b dΩ +

∫
ΓN

NT t dΓ

In impact-contact problems, equations of motion have the form

Mq̈ = f ext − f int − f contact



FEM for linear problems

The continuous Galerkin-Bubnov approximation method.
Finite element approximation of the displacement field u:

uh(x, t) =
NDOF∑
I=1

NI(x)uI(t), δuh(x, t) =
NDOF∑
I=1

NI(x)δuI(t)

where uI are unknown nodal displacements.
Discrete equations of motion for linear elasticity problems:

Mü + Ku = f ext

+ nodal Dirichlet boundary conditions.
Internal forces are given as

f int = Ku

with the stiffness matrix defined as

K =

∫
Ω

BTEB dΩ



Damping

General nonlinear problems:

Mü(t) + Du̇(t) + f int(u, ε, ε̇) = f ext(t) (1)

Damping matrix

D =

∫
Ω

dNTN dΩ

where d is viscous damping parameter.

Rayleigh damping matrix:
D = aM + bK

Caughey generalization:

D = M

p−1∑
k=0

αk(M
-1K)k

Viscoelastic material - effect of velocity/strain-rate:

σ = Eε+ ηε̇

where ε̇ is the strain-rate.



4. Mass matrices and lumping techniques

Consistent mass matrix MC =
∫

Ω %N
TN dΩ

Diagonal mass matrix ML

Averaged mass matrix MA = βMC + (1− β)ML

Higher-order mass matrix



Mass lumping (diagonalization)

Row sum method: me
ii =

n∑
j=1

me
ij

The row sum method produces negative diagonal terms for higher-order FEM.

The HRZ (Hinton-Rock-Zienkiewicz) method1:
A scaling method for conserving of total element mass. Procedure is as follows.

1. For each coordinate direction, select the DOFs that contribute to motion in that direction.
From this set, separate translational DOF and rotational DOF subsets.

2. Add up the CMM diagonal entries pertaining to the translational DOF subset only. Call
the sum S.

3. Apportion Me to DLMM entries of both subsets on dividing the CMM diagonal entries
by S.

4. Repeat for all coordinate directions.

The HRZ method can be used for higher-order FEM or FEM with rotation DOFs (beams, plates,
shells).

1Hinton, E., Rock, T.A. & Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method.
Int. J. Earthquake Eng. Struct. Dyn., 4, pp 245–249, 1976.



Direct inversion of mass matrix of consistent type

In explicit time integration, we need to solve

ü = M-1
(
f ext − f int − f contact

)
The aim is to take the direct inversion of the mass matrix M-1 from the consistent mass M
satisfies following properties

• To find a simple algorithm for a direct assembling of inversion of mass matrix in the finite
element method.

• The reciprocal (inverse) mass matrix should be of suitable sparsity as the consistent mass
matrix.

• It should accurately keep both low and intermediate-frequency response components;

• Except for discontinuous wave propagation problems, its numerically stable explicit inte-
gration step size should be much larger than employing the standard mass matrix.

• Its inverse should be inexpensive to generate, preferably without factorization computations.

• The customization techniques or mass scaling and tailoring should be applied, application
for controlling of the maximum eigen-frequency with respect to stability in explicit time
integration.



Direct inversion of mass matrix of consistent type

Reciprocal mass matrix - approximation of inversion of mass matrix M2, 3

M-1 = A-TCA-1 (2)

where C has the same sparsity as the global mass matrix M and A is a diagonal matrix.
Kinetic energy via velocity field u̇

T =

∫
Ω

1

2
ρu̇(x, t) · u̇(x, t) dΩ ≈ 1

2
u̇(t)TMu̇(t) (3)

Kinetic energy via linear momentum field (p = ρu̇)

T =

∫
Ω

1

2ρ
p(x, t) · p(x, t) dΩ ≈ 1

2
p(t)TCp(t) (4)

2J. Gonzalez, R. Kolman, S.S. Cho, C. Felippa, K.C. Park. (2018) Inverse Mass Matrix via the Method of Localized Lagrange
Multipliers. International Journal for Numerical Methods in Engineering, pp. 277–295, Vol. 113(2).

3J. Gonzalez, J. Kopačka, R. Kolman, S.S. Cho, K.C. Park. (2019) Inverse Mass Matrix for Isogeometric Explicit Transient
Analysis via the Method of Localized Lagrange Multipliers. International Journal for Numerical Methods in Engineering, pp.
939–966., Vol. 117(9).



Direct inversion of mass matrix of consistent type

Potential applications:

• Direct time integration in structural dynamics and contact-impact problems.

• Time stepping based on momentum-energy approaches.

• Estimation of time step size for explicit time integration.

• Evaluation of damping matrix in structural dynamics.

• Modal identification and Component mode synthesis.

• Preconditioning for eigen-value problems.

• Others?



Direct inversion of mass matrix of consistent type

Algorithm for the reciprocal mass matrix4, 5

For e = 1...Ne (elements)
Compute parametrized element mass matrix:
Me = (1− β)MC

e + βML
e

Assemble diagonal projection matrix:
Ae = ML

e −→ assembly A
Assemble reciprocal mass matrix:
Ce = AT

eM
−1
e Ae −→ assembly C

End for
Compute the free-floating inverse mass matrix: M−1 = A-TCA-1

Obtain the projector: P = I−M-1B [BTM-1B]−1 BT

Apply boundary conditions by projection: M-1
b = PM−1

Eliminate the rows and columns of M-1
b with applied boundary conditions

4J. Gonzalez, R. Kolman, S.S. Cho, C. Felippa, K.C. Park. (2018) Inverse Mass Matrix via the Method of Localized Lagrange
Multipliers. International Journal for Numerical Methods in Engineering, pp. 277–295, Vol. 113(2).

5J. Gonzalez, J. Kopačka, R. Kolman, S.S. Cho, K.C. Park. (2019) Inverse Mass Matrix for Isogeometric Explicit Transient
Analysis via the Method of Localized Lagrange Multipliers. International Journal for Numerical Methods in Engineering, pp.
939–966., Vol. 117(9).



5. Explicit time integration in FEM

nodal displacement vector: u(t)
nodal velocity vector : u̇(t) = v(t)
nodal acceleration vector : ü(t) = a(t)



Solutions of discretized equations of motion

• modal superposition (linear problems)

• matrix exponential (linear problems)

• direct time integration (linear and nonlinear problems)

System of second order ordinary differential equations:

Mü(t) + Du̇(t) + Ku(t) = f ext(t)− f contact(t) (5)

In direct time integration,

approximation of quantities

at discrete time tn

u(tn) ≈ uh(tn) = un

Temporal discretization:

t = 0, t1, t2, t3, . . . , T

Time step size:

∆ti = ti+1 − ti
For constant time step size ∆t:

tn = n∆t, n = 0, 1, 2, . . . , N



Solutions of discretized equations of motion

Mathematical methods for numerical solution of

the first-order system

ẏ = f (y, t),y = (u, u̇)T − state space

• The forward Euler method

• The backward Euler method

• The generalized trapeziodal method

• The midpoint method

• Methods of the Runge-Kutta type

• The central difference method

• Linear multi-step methods

• Other methods

the second-order system

ü = f (u, u̇, t)

• The Newmark method

• The Houbolt method

• The Wilson θ method

• The Midpoint method

• The Central difference method

• The HHT method

• The Generalized-α method

• Other methods



A predictor/multi-corrector form
of time scheme

The generalized-α method [Chung, Hulbert 1993]

Start

Predictori = 0

Stop

i = i+ 1

Corrector
ai+1
n+1 = ain+1 + ∆a

∥∥Ri
n+1

∥∥ ≤ ε
∥∥R0

n+1

∥∥Test

?
Yes

NodRi

dan+1

∆a = −Ri
n+1

din+1 = dn + ∆tvn +
(∆t)2

2

(
(1− 2β)an + 2βain+1

)ain+1 =
(γ − 1)

γ
an

vin+1 = vn

vi+1
n+1 = vin+1 + γ∆t∆a

di+1
n+1 = din+1 + β (∆t)2 ∆a

din+αf
= dn + αf (d

i
n+1 − dn)

vin+αf
= vn + αf (d

i
n+1 − dn)

ain+αm
= ain+1 + αm(ain+1 − an)

Ri
n+1 = R(din+αf

,vin+αf
, ain+αm

)



A review of explicit time integration methods in FEM

• the central difference method [Krieg 1973, Dokainish & Subbaraj 1989]

• the Verlet method [Verlet 1967] (molecular dynamics)

• the Trujillo method [Trujillo 1977]

• the Park variable-step central difference method [K.C. Park & Underwood 1980]

• the Chung and Lee method [Chung & Lee 1994]

• the explicit form of the generalized-α method [Hulbert & Chung 1996]

• the Zhai method [Zhai 1996]

• the Tchamwa–Wielgosz method [Tchamwa & Conway & Wielgosz 1999]

• the explicit predictor/multi-corrector method [Hughes 2000]

• the Tamma et al. method [Tamma et al. 2003]

• the Chang pseudo-dynamic method [Chang 2008]

• the semi-explicit modified mass method [Doyen et al. 2011]

• the Yin method [Yin 2013]

• the two-time step Bathe method [Noh & Bathe 2013]

• the multi-time step Park method [Park et al. 2012, Cho et al. 2013, Kolman et al.

2016]



Numerical errors, properties of time integrators

Numerical errors:

• dispersion (distortion of pulse), anisotropy and diffraction, polarization errors

• spurious oscillations, parasitic modes

• numerical dissipation and attenuation

• period elongation and amplification

Requirements and properties of explicit methods:

• diagonal mass and damping matrices

• second-order accuracy

• symplectic and energy and momentum conserving

• unconditionally/conditionally stability, time step size estimator

• numerical dissipation controlled by a parameter

• the numerical dissipation should affect higher modes; lower modes should not be affected

• an effective evaluator of RHS, underintegration of linear FEs with Hourglass

controlling.



6. Central difference method in time

Leapfrog integration - numerical analysis

Verlet method - molecular dynamic simulation



The central difference method

Equations of motion at the time t:

Müt = f ext − f int − f cont

Approximation of time derivatives - Central difference scheme6 in time:

u̇t ≈ ut+∆t − ut−∆t

2∆t
üt ≈ ut+∆t − 2ut + ut−∆t

∆t2

6Dokainish M.A., Subbaraj K. A survey of direct time-integration methods in computational structural dynamics - I. Explicit
methods. Comput. & Struct., 32(6), 1371–1386, 1989.



The central difference method

The Newmark method with β = 0, γ = 1/2.

Kinematic quantities:

ut+∆t = ut + ∆t u̇t +
∆t2

2
üt

u̇t+∆t = u̇t +
∆t

2

(
üt + üt+∆t

)
Equations of motion at the time t:

Müt + Kut = f text

Approximation of velocity and acceleration by the central differencies:

u̇t ≈ 1

2∆t

(
ut+∆t − ut−∆t

)
üt ≈ 1

∆t2
(
ut+∆t − 2ut + ut−∆t

)



Implementation I

Ft
eff = Ft

ext −
[
K− 2

∆t2
M
]
ut − 1

∆t2
Mut−∆t

Meff =
1

∆t2
M

ut+∆t = M−1
eff F

t
eff

In memory: displacements ut+∆t, ut, ut−∆t

The rest of quantities are computed if they are needed.



Implementation II - Leapfrog method

Solve time t = 0:

Evaluate force residual: r0 = fext(t = 0)−Ku0

Compute acceleration: ü0 = M−1r0

for n = 1...N (time steps)

Evaluate force residual: rn = fnext −Kun

Compute nodal accelerations: ün = M−1rn

Update nodal velocities: u̇n+1/2 = u̇n−1/2 + ∆tün

Update nodal displacements: un+1 = un + ∆tu̇n+1/2

end for

In memory: displacements ut+∆t, velocities u̇t+∆/2, accelerations üt



Implementation III -
Predictor-corrector form, Verlet method

Predictor
ũn+1 = un + ∆tu̇n +

∆t2

2
ün

˙̃u
n+1

= u̇n +
∆t

2
ün

¨̃u
n+1

= 0

Solve equations of motion at the time tn+1 = tn + ∆t

M∆¨̃u
n+1

= fext(t
n+1)− fint(t

n+1, ũn+1, ˙̃u
n+1

)− fcont(t
n+1, ũn+1, ˙̃u

n+1
)

Corrector
un+1 = ũn+1

u̇n+1 = ˙̃u
n+1

+
∆t

2
∆¨̃u

n+1

ün+1 = ∆¨̃u
n+1

Advantage: in memory only ut+∆t, vt+∆t, at+∆t



Central difference method

Requirement:

• for efficient computations, it is needed the inversion of M

• lumped (diagonal) mass matrix - no required a linear solver

Properties:

• explicit method

• conditionally stable (time step can not be chosen arbitrary)

• second order accuracy

• conserving of total energy in the limit ∆t→ 0, energy oscillations in sense of

the shadow Hamiltonian

• no amplitude decay

• period shortening

• reversible in time



One-dimensional stress wave in a bar

Linear (classical) wave equation

∂2u

∂t2
= c2

0

∂2u

∂x2

u - displacement, x - position, t - time, c0 =
√
E/ρ - wave speed

L

xF(t)
A,E,r

Scheme of a free-fixed bar under an impact loading.

Loading

σ(0, t) = −σ0H(t)

σ is the stress, H is the Heaviside step function.

Analytical solution

σ(x, t) = −σ0H(c0t− x)

KF Graff. Wave motion in elastic solids. Oxford University Press, 1975



One dimensional wave test
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7. Solving of nonlinear time-depend problems

Vector of internal forces:

fint =

∫
Ω

BT σ(deformation tensor, strain-rate, time, temperature, internal variables) dΩ

Often, vector local internal forces are evaluated by one-point Gauss integration

(only one integration point taken place in the centroid of a finite element) and the

stress tensor σ are kept as an internal state variable.

One-point integration ⇒ Hourglass stabilization

Enhanced FEM



Solving of nonlinear time-depend problems

Algorithm:
Initial conditions and initialization, time t = 0.
Set initial displacement u0, initial velocity u̇0, initial stress σ0 and initial values of other internal
material variables
n = 0, compute M or M-1

Evaluate internal force fnint, evaluate external force fnext, evaluate contact force fncont
Evaluate force residual: rn = fnext − fnint − fncont
Compute accelerations ün = M−1rn

Time update: tn+1 = tn + ∆tn+1/2, tn+1/2 = 1
2(tn + tn+1)

Update nodal velocities u̇n+1/2 = u̇n + (tn+1/2 − tn)ün

Enforce velocity boundary conditions

Update nodal displacements un+1 = un + ∆tn+1/2u̇n+1/2

Evaluate internal force fn+1
int for un+1 - the most demanding operations

Compute force residual rn+1 at tn+1 and accelerations ün+1

Update nodal velocities u̇n+1 = u̇n+1/2 + (tn+1 − tn+1/2)ün+1

Check energy balance at the time step n+ 1

Update counter n = n+ 1

Goto to STEP TIME UPDATE



8. Dynamic relaxation

General nonlinear problems in residual form:

r = Mü(t) + Du̇(t) + f int(u, ε, ε̇)− f ext(t) = 0 (6)

Time t is a parametr.

Cardinal question is setting the diagonal damping matrix D so that velocity u̇(t)→
0 and acceleration ü(t)→ 0 in explicit time integration. After that, f int(u, ε, ε̇)−
f ext(t)→ 0.

Optimal setting of damping parameters with respect to convergence, computational

cost and damping of dominant eigen-frequencies.



9. Stability of time schemes



Stability theory

In direct time integration, the recursive relationship in time stepping process has a form[
ut+∆t

u̇t+∆t

]
= A

[
ut

u̇t

]
+ Lt+ν(r), (7)

where A marks the amplification operator, which dictates stability behaviour of the method.

We define the spectral radius of A

ρ (A) = max
i=1,2,...,n

|λi| , (8)

where λi denotes the i-the eigen value of the operator A

Stability criterion yields:

1. if all eigenvalues are distinct, it must be satisfied ρ (A) ≤ 1 whereas

2. If A contains multiple eigenvalues, we require that all such eigenvalues |λi| < 1.



Stability theory - Central difference method

A =

[
2− ω2∆t2, −1

1, 0

]
, (9)

with eigen-values

λ1,2 =
2− ω2∆t2

2
±
√

(2− ω2∆t2)2

4
− 1. (10)

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

ω ∆ t 

ρ(A)

central difference method
Newmark method

The central difference method is conditionally stable.
Stability limit for the central difference method

∆tω ≤ 2 (11)

It yields the stability formula for the time step size ∆t as

∆t ≤ 2

ωmax
(12)

where ωmax is the maximum eigen value of the discretized system.



10. Time step size estimations for FEM



Time step size estimations for FEM

We define the Courant number:

Co =
∆tc1

H

∆t - time step size, c1 is wave speed of longitudinal wave, H - characteristic length

(length of finite element edge)

The non-dimensional angular velocity:

ω̄ =
ωH

c1

The critical time step size for the cetral difference method

∆tcr =
2

ωmax

Then, the critical time step size is given

Cocr =
∆tcrc1

H
=

2

ω̄max



Time step size estimations for FEM

Stability limit for the central difference method ∆t ≤ ∆tcr = 2
ωmax

Methods of time step size estimations

• global methods (computation or estimation of ωmax, KΦ = ω2MΦ )

- ωmax can be computed or estimated using global mass and stiffness matrices.

• element based methods (computation or estimation of ωemax on elemental

level,

KeΦe = ω2
eM

eΦe

- respecting the element eigenvalue inequality ωmax ≤ maxi ω
e
i over all finite

elements.

The highest eigenvalue of dissassembled system is higher than the highest

eigenvalue of the assembled system.

• nodal based methods - ωmax can be estimated from nodal stiffness and

mass properties based on the Gershgorin’s theorem



Time step size estimations for FEM

Global methods
Power iteration:

λΦn+1 = AΦn A = M−1K

Algorithm:

1. Initialize eigenvector Φ0, e.g. randon in range [-1,1], i = 0

2. i=i+1

3. Compute Ψi+1 = KΦi or as internal force Ψi+1 = fint(Φi)

4. Compute χi+1 = M-1Ψi+1

5. Compute estimate of eigenvalue λmaxi+1 = ‖χi+1‖

6. Update eigenvector Φi+1 = χi+1/λ
max
i+1

7. If |λmaxi+1 /λ
max
i − 1| > ε or i < N iter go to STEP 2.

About 10 iterations are sufficient.



Time step size estimations for FEM

Element based methods

Upper bound for eigenfrequency

ωmax ≤ max
i
ωei ≤

c1

le
with longitudinal wave speed c and characteristic length of element le.

How to choose le?7

l2De =
Aelement

lmax
l3De =

Velement
Amax

CFL (Courant-Friedrichs-Lewy 8) condition ∆t ≤ α le
c1

, α depends on element

type, integration type, order, shape, mass matrix, mass scaling, etc.
7LS-DYNA manual
8Courant, R., Friedrichs, K., Lewy, H., 1967, On the partial difference equations of mathematical physics



Critical Courant number

Linear 1D FEM with the lumped mass matrix

ωhmax =
2c0

H
, ω̄hmax = 2, Cocr =

∆tcr c0

H
=

2

ω̄hmax
= 1

Linear 1D FEM with the consistent mass matrix

ωhmax =

√
12c0

H
, ω̄ =

√
12, Cocr =

∆tcr c0

H
=

2

ω̄hmax
= 1/
√

3 ≈ 0.577

Square linear 2D and 3D FEM the with diagonal mass matrix

Cocrit =
∆tcrit c1

H
= 1

Serendipity quadratic (eight-noded) 2D and 3D FEM with the lumped mass by the

HRZ method

Cocrit =
∆tcrit c1

H
≈ 0.2



Time step size estimations for FEM

Nodal based methods

Gershgorin circle theorem9 based method: For a given square matrix A (complex

n× n matrix) the Gershgorin’s circle which belongs to the i-th diagonal entry Aii

is defined as Si(Aii,Ri =
n∑

j=1,i 6=j
| Aij |), i = 1, ..., n

where Si defines a circle with radius Ri and position around x-axis at the posi-

tion Aii.

Gershgorin’s circle: D(Aii, Ri) Ri =
n∑

j=1,i 6=j
| Aij |

Every eigenvalue of A lies within at least one of the Gershgorin

discs D(aii, Ri).

Example: A =

 3 −0.5 0.4
−0.75 4 −0.5

0 −0.7 1


row-wise column-wise
D(3, 0.9) D(3, 0.75)
D(4, 1.25) D(4, 1.2)
D(1, 0.7) D(1, 0.9)

9Gerschgorin, S., 1931, Über die Abgrenzung der Eigenwerte einer Matrix



Time step size estimations for FEM

Nodal based methods

Application for FEM with the lumped mass matrix10:

ω2
max ≤ max

i

n∑
j=1

| Kij |

Mii

This method respects Dirichlet boundary conditions.

Application for FEM with lumped mass matrix in contact-impact problems using

penalty formulation

ω2
max ≤ max

i

n∑
j=1

| Kij | +Kp
i

Mii

where Kp is the corresponding penalized stiffness matrix.

10Kulak, R., F., 1989, Critical Time Step Estimation for Three-Dimensional Explicit Impact Analysis



11. Mass scaling

Motivation: change frequency spectrum of FEM model via modification of mass

matrix, affect maximum eigen-frequency of FE system so that the critical time step

is larger and computations is efficient.

Smaller maximum eigen-value ⇒ larger time step size

Modification of mass matrix as

Mo = M + Λo

where Λo is the artificial added mass matrix.



Mass scaling

Methods of mass scaling in FEM

• convential mass scaling - adding artificial mass in diagonal terms of mass

matrix

mλ
e =

ρAle
2

[
1 0

0 1

]
mo

e = me + αmλ
e

- preserving the diagonal structure of mass matrix

- increasing element inertia - applied only to a small number of element -

applied to structural finite element (beam, shell, solid-like shell, applied only

on rotation degrees of freedom)

Frequency spectrum:



• selective mass matrix11 - adding artificial mass so so that translation inertia

is preserving.

mλ
e = β

ρAle
2

[
1 −1

−1 1

]
mo

e = me + βmλ
e

- only selected modes are affected

- off-diagonal mass matrix structure ⇒ using the reciprocal mass matrix

Frequency spectrum:

11Olovsson Etal. (2005) Selective Mass Scaling for explicit Finite Element Analyses, IJNME 63



General form for preserving of translation inertia12

mo
e =

∆m

n− 1
(I−

n∑
i=1

oio
T

i )

For example for 2D, rigid body modes for a four-noded element are chosen as

o1 =
[

1 0 1 0 1 0 1 0
]T

o2 =
[

0 1 0 1 0 1 0 1
]T

12Olovsson, et al. (2005) Selective Mass Scaling for explicit Finite Element Analyses, IJNME



General form for elimination of selected eigen-modes with corresponding modal

vectors Φl
13

mo
e = αPemeP

T

e

where

Pe = I−Φl[Φ
T

lΦl]
-1Φl

Modifying of the mass matrix so that the total mass is preserved and the higher

frequency spectrum is improved.

Mass scaled matrix:

mo
e = me + mλ

e

with

mλ
e = MeΦ

h
eSΦhT

e MT

e (13)

where Φh contents the higher mode shapes corresponding to eigen-modes for

improving, S is the diagonal matrix with coefficients for cutting of value of

higher eigen-frequencies14.

13J. Gonzalez, et al. (2018) Inverse Mass Matrix via the Method of Localized Lagrange Multipliers IJNME.
14J. Gonzalez, K.C. Park (2019) Largestep explicit time integration via mass matrix tailoring, IJNME.



Numerical tests - Eigen-vibration problems

1D bi-material rod - linear FEM

L1 = 5 m, L2 = 5 m,

A1 = 10 · 10−4 m2, A2 = 5 · 10−4 m2,

ρ1 = 2700 kg ·m−3, ρ2 = 7850 kg ·m−3,

E1 = 69e9 Pa, E2 = 210e9 Pa,

number of elements nel1 = 50, nel2 = 50

total mass m = A1L1ρ1 + A2L2ρ2 = 33.1250 kg

(a) frequency spectrum (b) frequency spectrum with mass tailoring



12. Application of Dirichlet boundary
conditions in explicit time schemes

• Direct elimination

• Penalty/bipenalty method

• Lagrange multipliers



Application of Dirichlet boundary conditions
via Lagrange multipliers

Constrained elastodynamic problem

Mü + Bλ + Ku = fext (14)

BTü− Lbüb = 0 (15)

A close formula for the Lagrange multipliers (reaction forces on constraints)

λ = (BTM-1B)-1(BTM-1r− Lbüb) (16)

with the residual r = fext −Ku



Application of Dirichlet boundary conditions
via Lagrange multipliers

Initialize t0 = 0, u0 and u̇0 respecting the constraints Bu0 = 0 and Bu̇0 = 0,

assemble M-1, K, B and compute ü0 = M-1
(
f 0
ext −Ku0

)
, u

1
2 = u0 + ∆tu̇0

While t<T

Setting of the time step size ∆t by the power iteration method

un = un−1 + ∆tu̇n−
1
2

rn = fnext −Kun

λn = (BTM-1B)-1(BTM-1rn − Lbü
n
b )

ün = M-1 (rn −Bλn)

u̇n+1
2 = u̇n−

1
2 + ∆tün

t = t + ∆t; n = n + 1;



13. Wave speeds in solids, dispersion of FEM,
mesh size and time step size for explicit FEM



Waves in isotropic elastic continuum

P-wave S-wave Rayleigh’s wave Love’s wave

source: c©2007 Michigan Technological University; http://www.geo.mtu.edu/UPSeis/waves.html

Other wave types:

• waves in rods, flexural (bending) and torsional waves, guided waves

• Lamb’s waves (waves in plates, dispersive, application in NDT)

• surface Rayleigh’s waves (waves in a half-space)

• Love’s waves (waves in a half-space covered by a layer with different elastic properties)

• von Schmidt’s waves (reflected waves from boundaries)

• inter-facial Stoneley’s (Leaky Rayleigh’s) waves

• Scholte’s waves (solid-liquid interface)



Wave speeds in solids

3D longitudinal wave: c1 =
√

(Λ + 2G)/ρ

3D shear wave: c2 =
√
G/ρ

2D longitudinal wave under plane strain state: c1 =
√

(Λ + 2G)/ρ

2D shear wave under plane strain state: c2 =
√
G/ρ

2D longitudinal wave under plane stress state: c1 =

√
E

(1− ν2) ρ

2D shear wave under plane stress state: c2 =
√
G/ρ

1D longitudinal wave under uniaxial strain state: c =

√
(1− ν)E

(1 + ν)(1− 2ν) ρ

1D longitudinal wave under uniaxial stress state: c =
√
E/ρ

Λ, G Lamé are parameters, ν is Poisson ratio.



Dispersion

Dispersion: dependence of angular velocity ω on wave number k

Nonliner Dispersion law: ω = f (k) ⇒ distortion of pulse
Group speed: cg = ∂ω

∂k ; Phase speed: c = ω
k

Type of dispersion:

• physical dispersion (higher order terms in governing equations)

• geometrical dispersion (wave in plates or cylinders)

• numerical dispersion (FEM, etc.)



Spatial dispersion - one-atomic chain

Brillouin, L.: Wave Propagation in Periodic Structures.
Dover Publications, Inc., New York 1953.

Equation of motion :

üj = ω2
0(uj−1 − 2uj + uj+1)

ω2
0 = c2

0 = K/m

Assumption of solution:

uj(t) = U0e
ijψeiωt

where ψ = k + ib, k ∈< −π, π >
Propagating wave for ω/ω0 < 2

k 6= 0 a b = 0

dispersion relation ω = 2ω0 |sin(k/2)|

Attenuating wave for ω/ω0 > 2

k = π and b 6= 0



Dispersion - classical 1D FEM

Thompson, L.L., Pinsky, P.M.: Complex wavenumber Fourier analysis of the p-version finite
element method. Computational Mechanics, Vol. 13(4), 255-275, 1994.
Kolman, R., Plešek J., Okrouhlik, M. Complex wavenumber Fourier analysis of the B-spline
based finite element method. Wave Motion, Vol. 51(2), 348359,2014.
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classical FE − mass matrix by HRZ method

kh ⋅ h / p 

ch  / 
c 0

order p = 1
order p = 2
order p = 3
order p = 4

π 

The high mode behaviour of Lagrangian FE is divergent with the order of approximation. Existing
of optical modes for classical FEs.



Dispersion - classical 2D FEM a

aKolman R. Plešek J., Okrouhlik M., Gabriel D. Grid dispersion analysis of plane square biquadratic
serendipity finite elements in transient elastodynamics, International Journal for Numerical Methods
in Engineering, 96(1), pp. 1–28, 2013.

Characteristic equations of motion for patch

Mcü
h + Kcu

h = 0

Fourier analysis - prescriebed time nodal displacements

uhmn = Umn exp
[
i
(
kh xm px + kh yn py − ωt

)]
vhmn = Vmn exp

[
i
(
kh xm px + kh yn py − ωt

)]

H

H

L

y

x

p

wave front

h



Bilinear FEM - dispersion relationship

Consistent mass matrix
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Two solutions: longitudinal wave and shear wave



Bilinear FEM - polar diagrams

Consistent mass matrix
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Lumped mass matrix
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Anisotropic effect of FE discretization.



Bilinear finite element

Dispersion curves
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Consistent mass matrix⇒ overestimation of wave speed⇒ the Newmark method

Lumped mass matrix⇒ underestimation of wave speed⇒ the central difference

method



Mesh size recommendation

Mesh size: H ≤ (H/λh)allowed λ,

H ≤ (H/λh)allowed
c2

fmax
,

where fmax is the highest loading frequency.

(H/λh)allowed
speed ch chg ch chg

error [%] linear serendipity

1 0.080 0.043 0.325 0.215

2 0.110 0.059 0.394 0.259

5 0.162 0.090 - 0.333

10 0.225 0.132 - 0.405

For quadratic element and for dispersion error in phase speed 2% is recommended
mesh size as H < λ/3.

For linear element and for dispersion error in phase speed 2% is recommended
mesh size as H < λ/10.



Example of mesh size estimation
for bilinear FEM

Minimal edge length for structured bilinear FE meshes:
Hmin ≤ 10λhmin,

where the minimal wave length propagating wave with frequency fmax can be estimated as

λhmin ≈
c2

fmax
=

shear wave speed

loading frequency
.



Temporal-spatial dispersion -
linear FEM with diagonal mass matrix and CDa

aKolman R. Plešek J., Červ J. ,Okrouhlik M., Pař́ık P. Temporal-spatial dispersion and stabil-
ity analysis of finite element method in explicit elastodynamics, International Journal for Numerical
Methods in Engineering, 106(2), pp. 113–128, 2016.
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Reducing numerical dispersion
in wave propagation

Integration of longitudinal and shear waves separately 15,16

The mismatch in wave speeds of shear, longitudinal and other of wave types ⇒
dispersion errors.

n n+Sn+Ln+1

Dt
n

Dt
L

n

Dt
S

Longitudinal waves (under plane strain): ∆tL = H/cL, cL =
√

Λ+2G
ρ

Transverse waves (under plane strain): ∆tS = H/cS, cS =
√

G
ρ

cS < cL ⇒ ∆tL < ∆tS

Stability limit: ∆tc = ∆tL. Time step: ∆t = αL∆tc.

15 K.C. Park, S.J. Lim, H. Huh. (2012) A method for computation of discontinuous wave propagation in heterogeneous solids:
Basic algorithm description and application to one-dimensional problems. IJNME

16 S.S. Cho, K.C. Park, H. Huh. A method for multidimensional wave propagation analysis via component-wise partition of
longitudinal and shear waves (2013) INJME. 2013.



Proposed scheme - 1D case

Park K.C., Lim S.J., Huh H. A method for computation of discontinuous wave propagation in

heterogeneous solids: basic algorithm description and application to one–dimensional problems.

Inter. J. Num. Meth. Eng., 91(6), 622–643, 2012.

Pushforward extrapolation

un+c = un + ∆tcu̇
n +

(∆tc)
2

2
ün

ün+c = M-1
(
f ext(tn+c)− f int(un+c)

)
, tn+c = tn + ∆tc

Pullback interpolation

un+1 = un + ∆tu̇n + ∆tc
2β1(α)ün + ∆tc

2β2(α)ün+c

β1(α) =
1

6
α
(
1 + 3α− α2

)
, β2(α) =

1

6
α
(
α2 − 1

)
, α =

∆t

∆tc

As alluded to already, this scheme filters out post-shock oscillations but triggers

front-shock oscillations. The best choice of α is 0.5.

For α = 1 → the central difference method.



The pullback interpolation

Pullback interpolation: un+1 = un + ∆tu̇n + ∆tc
2β1(α)ün + ∆tc

2β2(α)ün+c

n n+Cn+1

Dt
n

Dt
C

β1(α) = 1
6α
(
1 + 3α− α2

)
β2(α) = 1

6α
(
α2 − 1

)
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Stability limit with respect to the CFL condition ∆tc = H/c0, c0 =
√
E/ρ.

Time step size: ∆t ≤ ∆tc, ∆t = α∆tc, α = (0, 1], our choiceα = 0.5.



Results for the front-shock including integration
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1D non-spurious oscillations scheme

STEP 1. A post-shock triggering integrator - the central difference method

un+1
cd = un + ∆tu̇n +

∆t2

2
ün

ün+1
cd = M-1(f ext(tn+1)− f int(tn+1,un+1

cd )

u̇n+1
cd = u̇n +

∆t

2
(ün + ün+1

cd )

STEP 2. A front-shock triggering integrator

un+c = un + ∆tcu̇
n +

(∆tc)
2

2
ün

ün+c = M-1(f ext(tn+c)− f int(tn+c,un+c))

un+1
fs = un + ∆tu̇n + ∆tc

2β1(α)ün + ∆tc
2β2(α)ün+c

β1(α) =
1

6
α
(
1 + 3α− α2

)
, β2(α) =

1

6
α
(
α2 − 1

)
, α =

∆t

∆tc
ün+1
fs = M-1(f ext(tn+1)− f int(tn+1,un+1

fs ))

u̇n+1
fs = u̇n +

∆t

2
(ün + ün+1

fs )

STEP 3. Averaging STEP 1. and STEP 2. by θ ∈ [0, 1]

un+1 = θun+1
fs + (1− θ)un+1

cd , u̇n+1 = θu̇n+1
fs + (1− θ)u̇n+1

cd , ün+1 = θün+1
fs + (1− θ)ün+1

cd



Results for the proposed time scheme
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The algorithm exhibits minimal sensitivity on the time step size.



Integration of longitudinal
and transverse waves together

The mismatch in wave speeds of shear, longitudinal and other of wave types ⇒
dispersion errors.

n n+Sn+Ln+1

Dt
n

Dt
L

n

Dt
S

Longitudinal waves (under plane strain)

∆tL = H/cL, cL =

√
Λ + 2G

ρ

Transverse waves (under plane strain)

∆tS = H/cS, cS =

√
G

ρ

cS < cL ⇒ ∆tL < ∆tS

Stability limit: ∆tc = ∆tL. Time step: ∆t = αL∆tc.



Component-wise partitioned equations of motion

Decomposition of elemental displacement field : ue = ueL+ueS, ueL = De
Lue, ueS = De

Su
e

Partition of unity: De
S + De

L = Ie

Projector property: DeT
S De

S = De
S, DeT

L De
L = De

L

Symmetry: DeT
S = De

S, DeT
L = De

L

Orthogonality: De
LDe

S = De
SD

e
L = 0e

Element mass commutability: DeT
L Me = MeDe

L, DeT
S Me = MeDe

S

Element mass orthogonality: DeT
L MeDe

S = MeDe
LDe

S = 0e

The virtual work for a generic element may be written as

δΠe(ue) = δueT(f eext − f eint −Meüe)

The virtual work can be decomposed into the following partitioned work17:

δΠe(ueL,u
e
S) = δueTL (f eext,L − f eint,L −MeüeL)︸ ︷︷ ︸

longitudinal component equation

+ δueTS (f eext,S − f eint,S −MeüeS)︸ ︷︷ ︸
shear component equation

where

f eext,L = DeT
L f eext, f eint,L = DeT

L f eint

f eext,S = DeT
S f eext, f eint,S = DeT

S f eint
17R. Kolman, S.S. Cho, K.C. Park, Efficient implementation of an explicit partitioned shear and longitudinal wave propagation

algorithm, International Journal for Numerical Methods in Engineering, 2016, vol. 107, no. 7, p. 543-579.



Decomposition of displacement and force fields

u(x, y, t) =
4∑
i=1

Ni(ξ, η)ui, v(x, y, t) =
4∑
i=1

Ni(ξ, η)vi

N1 =
1

4
(1− ξ)(1− η), N2 =

1

4
(1 + ξ)(1− η), N3 =

1

4
(1 + ξ)(1 + η), N4 =

1

4
(1− ξ)(1 + η)

1

4

2

3
h

x

u(x, y) = uL(x, y) + uS(x, y)

uL(x, y) = 1
4(u1 +u2 +u3 +u4)+ 1

4(−u1 +u2 +u3−u4)ξ
+1

4(u1 − u2 + u3 − u4)ξη

uS(x, y) = 1
4(−u1 − u2 + u3 + u4)η

v(x, y) = vL(x, y) + vS(x, y)

vL(x, y) = 1
4(v1 +v2 +v3 +v4) + 1

4(−v1−v2 +v3 +v4)η
+1

4(v1 − v2 + v3 − v4)ξη

vS(x, y) = 1
4(−v1 + v2 + v3 − v4)ξ

ueL = De
Lue, ueS = De

Su
e, ue = {u1, v1, u2, v2, u3, v3, u4, v4}T

f eL = De
Lf e, f eS = De

Sf
e, f e = {f1x, f1y, f2x, f2y, f3x, f3y, f4x, f4y}T

With one-point integration, Hourglass modes are suppressed.



Decomposed matrices for a quadrilateral

Shear decomposed matrix

De
S =

1

4



1 0 1 0 −1 0 −1 0
0 1 0 −1 0 −1 0 1
1 0 1 0 −1 0 −1 0
0 −1 0 1 0 1 0 −1
−1 0 −1 0 1 0 1 0

0 −1 0 1 0 1 0 −1
−1 0 −1 0 1 0 1 0

0 1 0 −1 0 −1 0 1


Longitudinal decomposed matrix

De
L =

1

4



3 0 −1 0 1 0 1 0
0 3 0 1 0 1 0 −1
−1 0 3 0 1 0 1 0

0 1 0 3 0 −1 0 1
1 0 1 0 3 0 −1 0
0 1 0 −1 0 3 0 1
1 0 1 0 −1 0 3 0
0 −1 0 1 0 1 0 3





A front-shock integrator in multidimen. cases

un+L = un + ∆tLu̇n +
(∆tL)2

2
ün

un+S = un + ∆tLu̇n +
(∆tS)2

2
ün

ün+L
L = M-1(f extL (tn+L)− f intL (tn+L,un+L))

ün+S
S = M-1(f extS (tn+S)− f intS (tn+L,un+S))

un+1
L = unL + ∆tu̇nL + ∆tL

2β1(αL)ünL + ∆tL
2β2(αL)ün+L

L

un+1
S = unS + ∆tu̇nS + ∆tS

2β1(αS)ünS + ∆tS
2β2(αS)ün+S

S

β1(αL,S) =
1

6
αL,S

(
1 + 3αL,S − α2

L,S

)
, β2(αL,S) =

1

6
αL,S

(
α2
L,S − 1

)
αL =

∆t

∆tL
, αS =

∆t

∆tS

(un+1
fs = un+1

L + un+1
S )

un+1
fs = un + ∆tu̇n + ∆tL

2β1(αL)ünL + ∆tL
2β2(αL)ün+L

L + ∆tS
2β1(αS)ünS + ∆tS

2β2(αS)ün+S
S

ün+1
fs = M-1(f ext(tn+1)− f int(tn+1,un+1

fs ))

u̇n+1
fs = u̇n +

∆t

2
(ün + ün+1

fs )

Then, the averaging with the central difference solution at the time tn+1: un+1
cd , u̇n+1

cd , ün+1
cd



14. Examples of wave propagation problems



Impact of thick elastic plates

x

y

z v0v0

2
d

impact head
of plates

Geometry: plate thickness 2d = 5.0 [mm]
length L = 4d = 10.0 [mm]

2D problem, plane strain.
Nodes on impact head fixed.

Elastic and mass parameters:

E = 200 [GPa], ν = 0.3 [-], ρ = 7800 [kg/m3]

Initial velocity v0 = 1 [m/s].

Mesh density of linear FEs: 300× 300.

The proposed method with θ = 0.5.

The central difference method.

Time step sizes:
∆t = 0.5H/cL, ∆tL = H/cL, ∆tS = H/cS

Analytical solution of the problem:

Brepta B, Valeš F. Longitudinal impact of bodies. Acta Technica ČSAV, 32, 575–602, 1987.



Impact of thick elastic plates

the central difference method the Park’s method

Distributions of σxx at the time t = 1.5d/cL.

A lot of analytical/semi-analytical solutions of elastic wave propagation and impact

problems have been reported at the link

http://www.cdm.cas.cz/ hora/brepta/zpravy.html



Thin elastic disc loaded by a sudden radial force

R

s

y

x
a

a

t

s
0

s

Geometry: disc radius R = 1.0 [mm]
2D problem, plane stress
Elastic and mass parameters:

E = 8/9 [GPa]

ν = 1/3 [-]

ρ = 1 [kg/m3]

Normal stress:

σ0 = 1 [GPa], α = π/60 [rad]

FE model - a half of disc.

Number of finite elements: 21600.

The proposed method with θ = 0.5.

Time step sizes:
∆t = 0.5∆tL, ∆tL = 0.7H/cL

∆tS = ∆tLcL/cS

Analytical solution of the problem:

Červ J, Slavikova J. Motion and stress-state of a thin disc under radial impact load. Acta

Technica ČSAV, 32(2), 113–133, 1987.



Thin elastic disc loaded by a sudden radial force

the central difference method the Park’s method

Distributions of σxx/σ0 at the time t = 1.5R/cL.



The Taylor test

x

y

z

ØD0

L

v0

rigid wall

Geometry: bar radius R = 3.2 [mm]
length L = 32.4 [mm]

Impact velocity L = 227.0 [m/s]
3D problem
Elastic and mass parameters of copper:

E = 117 [GPa]

ν = 0.35 [-]

ρ = 8.93 [kg/m3]

Simo J2 finite plasticity theory

Bilinear stress-strain curve

Isotropic hardening

Yield strength σY = 400 [MPa]

Plastic modulus E ′ = 100 [MPa]

Taylor GI. The use of flat ended projectiles for determining yield stress. I. Theoretical consider-

ations. Proceedings of the Royal Society A , 194, 289–299, 1948.



The Taylor test - dynamic plasticity
with strain-rate effect

Distributions of σekv at the time t = 80 µs.



Integration with local stepping

STEP 1. Pull-back integration with local stepping:

1a) Integration by the central difference scheme with the local (elemental) critical time step size
∆tcre for each finite element at the time tn+cr = tn + ∆tcre

(un+cr
fs )e = une + ∆tcre vne +

1

2
(∆tcre )2ane (17)

(an+cr
fs )e = (Me)

-1
[
fn+cr
e −Ke(u

n+cr
fs )e

]
(18)

The elemental critical time step size ∆tcre is set as ∆tcre = he/ce or ∆tcre = 2/ωemax, where ωemax
is the maximum eigen-angular velocity for the e-th separate finite element.

1b) Pull-back interpolation of local nodal displacement vectors at the time tn+1 = tn + ∆t with
α = ∆t/∆tcre , β1(α) = 1

6α
(
1 + 3α− α2

)
, β2(α) = 1

6α
(
α2 − 1

)
(un+1

fs )e = une + ∆tcre vne + (∆tcre )2β1a
n
e + (∆tcre )2β2(a

n+cr
fs )e (19)

1c) Assembling of local contributions of displacement vector from Step 1b.

un+1
fs = [LTL]-1LT(un+1

fs )e (20)

where L is the assembly Boolean matrix.



STEP 2. Push-forward integration with averaging:

2a) Push-forward predictor of displacement vector at the time tn+1 = tn + ∆t by the central
difference scheme with the time step size ∆t.

un+1
cd = un + ∆tvn +

1

2
∆t2an (21)

2b) Averaging of the total displacement vectors at the time tn+1 = tn + ∆t form Steps 1c and
2a for given θ = [0, 1].

un+1 = θun+1
fs + (1− θ)un+1

cd (22)

2c) Evaluation of acceleration and velocity nodal vectors at the time tn+1 = tn + ∆t.

an+1 = (M)-1
[
f(tn+1)−Kun+1

]
(23)

vn+1 = vn +
1

2
(an + an+1) (24)



Local stepping scheme via multi-time step
methoda

aKolman, S.S. Cho, J. Gonzalez, K.C. Park, A. Berezovski, V. Adamek, P. Hora. A method with local time stepping
for computation of discontinuous wave propagation in heterogeneous solids: Application to one-dimensional problems and
unstructured meshes, International Journal for Numerical Methods in Engineering, under progres



Heterogeneous multi-time step integration for
heterogeneous mediaa

aS.S. Cho, R. Kolman, J. Gonzalez, K.C. Park. Explicit Multistep Time Integration for Discontinuous Elastic Stress Wave
Propagation in Heterogeneous Solids, International Journal for Numerical Methods in Engineering, 2019 Vol. 118, p. 276-302.

For heterogeneous media, the wave speeds are different at each ma-
terial point.

Accurate wave scheme for anizotropic and heterogeneous media is
still an open problem to solve.



15. Contact mechanics
with the bipenalty method



Contact mechanics
with the bipenalty method

Motivation: Full nonlinear problem - contact impenetrability interfaces are a part

of solution with value of normal and tangential forces respecting friction law.

• frictionless contact

• friction contact (Coulomb law, non-Coulomb law - auto-parametric vibration,

velocity dependence, split-stick motion)

• Contact of two bodies

• Self-contact

• Static contact

• Dynamic contact - contact-impact problem



Contact Kinematics

Contact of two bodies:

Impenetrability condition
Ω

(i)
t ∩ Ω

(k)
t = ∅

where i ∈ {1, 2}, and k = {1, 2}\i.

Close point problems:

x̄(k) = arg min
x(k)∈γ(k)

c

∥∥∥x(i) − x(k)
∥∥∥



Contact Kinematics

Gap function: g
(i)
N := −

(
x(i) − x(k)

)
· n̄(k) Gap is non-negative: g

(i)
N ≥ 0

The contact traction vector: t
(i)
c = σini

normal stress (contact pressure): pc = t
(i)
c · n

contact pressure is compressive: pc ≤ 0



Frictionless Contact Boundary Value
Problem

Balance of linear momentum

divσ(i) + b(i) = ρ(i)ü(i) in Ω(i)

Boundary conditions

u(i) = û(i) on Γ
(i)
N

σ(i)n(i) = t̂(i) on Γ
(i)
D

σ(i)n(i) = p(i)
c n̄(k) on Γ(i)

c

Hertz-Signorini-Moreau conditions

p(i)
c ≤ 0, g

(i)
N ≥ 0, p(i)

c g
(i)
N = 0



Contact algorithms

Energy balance (principle of virtual work):

δT − δU + δW + δWc = 0

Contact virtual work

δWc =−
∫

Γ
(i)
c

p(i)
c n̄(k) ·

(
δu(i) − δu(k)

)
dΓ(i)

=

∫
Γ

(i)
c

p(i)
c δg

(i)
N dΓ(i)



Enforcement of contact constraints

• Penalty method (PM):

Wc = −
∫

Γc

1

2
εN(g

(i)
N )2dΓ for g

(i)
N ≥ 0

p(i)
c = εN

〈
g

(i)
N

〉
, 〈x〉 :=

|x|+ x

2
where εN penalty stiffness parameter.

Linearized contact forces: fc = Kpu, where Kp is the contact stiffness matrix

• Lagrange multiplier method (LMM):

Wc = −
∫

Γc

λNg
(i)
N dΓ for g

(i)
N ≥ 0

p(i)
c = λ

(i)
N

Lagrange multiplier - λN



• Augmented Lagrangian method (ALM):

Wc = −
∫

Γc

(
λNg

(i)
N +

1

2
εN(g

(i)
N )2

)
dΓ for g

(i)
N ≥ 0

p(i)
c =

〈
λ

(i)
N + εNg

(i)
N

〉
– with Uzawa iteration:

p(i)
c`+1

= p(i)
c`

+ εN

〈
g

(i)
N

〉



Properties of the penalty method in
contact problems

The Penalty method - a method for enforcement of contact constraints. It is needed to
choice the penalty stiffness parameter.
The penalty method is not the consistent method and Ill-conditioned method.
The solution of contact problems depends on the value of the penalty stiffness parameter εN.
In this method, the stable time step size is affected by the penalty stiffness parameters εN.
The penalty method is simply implemented into FEM codes.

Influence of penalty stiffness parameter on stable time step size.



Bipenalty method

Lagrangian functional is enhanced by the bipenalty terms

L(u, u̇) = T (u̇)− U(u) +W(u) +Wc(u)

Kinetic energy

T (u̇) =

∫
Ω

1

2
ρu̇ · u̇ dV

Strain energy

U (u) =

∫
Ω

1

2
σ : ε dV

Work of external forces

W (u) =

∫
Ω

u · b dV +

∫
Γσ

u · t dΓ

Penalization term associated to the contact interface

Wc(u) = −
∫

Γc

1

2
εsg

2
N dΓ +

∫
Γc

1

2
εmġ

2
N dΓ

where gN is the gap function, εs is the stiffness penalty parameter [kg m−2 s−2], εm is the mass
penalty parameter [kg m−2]
The Hamilton’s principle

δ

∫ T

0

L (u, u̇) dt = 0



Variational formulation∫
Ω

ρδu · ü dV +

∫
Ω

δε : σ dV +

∫
Γc

δgN(εmg̈N + εsgN) dΓ

=

∫
Ω

δu · b dV +

∫
∂Ωσ

δu · t dΓ

Discretized equation of motion

Mü + Ku + Rc(u, ü) = R

vector of contact forces
Rc(u, ü) = Mpü + Kpu + fp

where

Mp =

∫
Γc

εmZZT dΓ Kp =

∫
Γc

εsZZT dΓ fp =

∫
Γc

εsZg0 dΓ

gap function
gN = ZTu + g0

For 1D case
ZT = [1,−1]

penalty stiffness and mass matrices

Kp = εsA

[
1 −1
−1 1

]
Mp = εmA

[
1 −1
−1 1

]



Bipenalized Signorini problem

Simple dynamic system with two degrees-of-freedom18

h

E,A, ρ

εm

εs

u1u2

EA

h

[
1 + βs −1
−1 1

]
u = ω2ρAh

2

[
1 + βm 0

0 1

]
u

where the dimensionless stiffness βs and mass penalty βm are

βs :=
h

EA
εs βm :=

2

ρAh
εm r =

1

2

βs
βm

E is the Young’s modulus, A is the cross-section, ρ is density.

18J. Kopačka, A. Tkachuk, D. Gabriel, R. Kolman, M. Bischoff, J. Plešek. On stability and reflection-transmission analysis of
the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study. Int. J. Numer. Meth. Engng.
pp 1607-1629, Vol. 113, 2018.



Bipenalized Signorini problem

Bipenalized Signorini problem 19
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r =∞ (penalty method)

General choice of penalized mass matrix 20

Mp =
1

ω2
max

Kp

19J. Kopačka, A. Tkachuk, D. Gabriel, R. Kolman, M. Bischoff, J. Plešek. On stability and reflection-transmission analysis of
the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study. Int. J. Numer. Meth. Engng.
pp 1607-1629, Vol. 113, 2018.

20R. Kolman, J. Kopačka, J. Gonzalez, S.S. Cho, K.C. Park. Bi-penalty stabilized technique with predictor-corrector time
scheme for contact-impact problems of elastic bars, Mathematics and Computers in Simulation, under preparation of revision



Time integration for the bipenalty method

Central Difference Method in time

Compute nodal accelerations: a(i) = (M + Mc)
−1 (R(i) + Kpu

(i) −Ku(i))

Update nodal velocities: v(i+1
2) = v(i−1

2) + ∆ta(i)

Update nodal displacements: u(i+1) = u(i) + ∆tv(i+1
2)

Stability condition:

∆t ≤ ∆tcrit =
2

ωmax



Time integration for the bipenalty method

Stabilized Central Difference Method with predictor-corrector21 22

Predictor - solution without contact

a(i)
pre = M−1

(
R(i) − F(i)

)
v

(i+ 1
2)

pre = v(i− 1
2) + ∆ta(i)

pre

u(i+1)
pre = u(i) + v

(i+ 1
2)

pre ∆t

Corrector - only contact

a(i)
cor = (M + Mc)

−1
(
Kpu

(i+1)
pre

)
a(i) = a(i)

pre + a(i)
cor

v(i+ 1
2) = v

(i+ 1
2)

pre + ∆ta(i)
cor

u(i+1) = u(i) + v(i+ 1
2)∆t

21Wu. S.R. A variational principle for dynamic contact with large deformation. in Comput. Methods Appl. Mech. Engrg., pp
2009–2015, Vol. 198 2009.

22R. Kolman, J. Kopačka, J. Gonzalez, S.S. Cho, K.C. Park. Bi-penalty stabilized technique with predictor-corrector time
scheme for contact-impact problems of elastic bars, Mathematics and Computers in Simulation, under preparation of revision



Impact of two bars - Huněk problem a

aHuněk, I. On a penalty formulation for contact-impact problems,Computers & Structures, 48(2),
193–203, 1993.

E1, A1, ρ1

v0

g0 L2

E2, A2, ρ2

L1

x

L1 = 10 m, L2 = 20 m, v0 = 0.1 m · s−1, g0 = 0 m, A1 = A2 = 1 m2, E1 = E2 = 100 Pa,
ρ1 = ρ2 = 0.01 kg ·m−3

Numerical parameters: number of elements NELEM1 = 100 , NELEM2 = 200; Courant
number Co = 0.5; bipenalty ratio r = 1;
chosen stiffness penalty parameters βs = {0.25; 0.25e2; 0.25e4; 0.25e8}.



Contact force - CD method with the bipenalty
method

(a) βs = 0.25e0 (b) βs = 0.25e2

(c) βs = 0.25e4 (d) βs = 0.25e8



Contact force - Wu method

(a) βs = 0.25e0 (b) βs = 0.25e2

(c) βs = 0.25e4 (d) βs = 0.25e8

The solution does not depend on the penalty stiffness parameter.



16. Conclusions

• The explicit time integration for real problems is still an open task for study.

• We have studied the properties of explicit time integration in dynamic finite

element analysis, wave propagation and contact-impact problems.

• We have suggested new methodologies for accurate modelling of wave propa-

gation problems in solids.

• We have suggested new methodologies for accurate modelling of contact-

impact problems of solids.

• Future works - localized versions of the bipenalty stabilization, heterogeneous

and asynchronous time integration for heterogeneous and anisotropic media.

Thank you for your attention.


