Regularization properties of Krylov subspace projections

I. Hnětynková

Faculty of Mathematics and Physics, Charles University in Prague

PANM 20 - June 2020

Regularization by projection 00000000

Propagation of noise

Residuals of selected method

Conclusion 00

- 1. Inverse problem
- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods
- 5. Conclusion

Regularization by projection 000000000

Propagation of noise

Residuals of selected method

Conclusion 00

Outline

1. Inverse problem

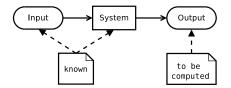
- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods
- 5. Conclusion

Regularization by projection

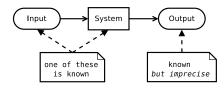
Propagation of noise 0000000000000 Residuals of selected method 00000000000 Conclusion 00

Basic illustration

Forward Problem



Inverse Problem



Regularization by projection

Propagation of noise

Residuals of selected method

Conclusion 00

Fredholm integral equation

Given the continuous smooth kernel K(s, t) and the (measured) data g(s), the aim is to find the (source) function f(t) such that

$$g(s) = \int_I K(s,t) f(t) dt + e(s).$$

Fredholm integral has smoothing property, i.e. high frequency components in g are dampened compared to f.

1D example: Barcode reading

Regularization by projectior

Propagation of noise

Residuals of selected methods

Conclusion 00

Example: Fredholm integral equation - discretization

1D example: Barcode reading

sharp barcode f(t)

Gaussian blur

measured data g(s)

$$g(s) = \int_{I} K(s,t) f(t) dt + e(s).$$

Using numerical quadrature formulas, we get a linearized model

$$b = Ax + e$$
, with $A \in \mathbb{R}^{n \times m}$, $b, e \in \mathbb{R}^n$, $x \in \mathbb{R}^m$,

where A has the smoothing property.

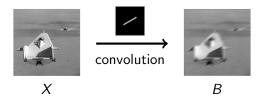
Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

2D Example: image deblurring problem



The data *B* are naturally linear. Using the vectorization x = vec(X), b = vec(B), we obtain a deconvolution problem

$$b = A\mathbf{x} + \mathbf{e}$$

with a large, sparse, structured, square model matrix A.

Regularization by projection

Propagation of noise

Residuals of selected method

Conclusion 00

Naive solution

If A is square nonsingular, a naive approach is to solve directly

 $Ax^{\text{naive}} = b.$

2D Example: image deblurring

Regularization by projection

Propagation of noise

Residuals of selected method

Conclusion

Linear model

Consider a linear ill-posed problem

b = Ax + e,

where the noise vector e

- is an unknown perturbation (rounding errors, errors of measurement, noise with physical sources, etc.),
- with the unknown noise level

 $\delta^{\text{noise}} \equiv \|e\|/\|b\| << 1$

Properties of the problem:

- A dampens high frequencies (smoothing property),
- exact right-hand side is smooth, but noise is not,
- small changes in *b* cause large changes in the solution.

Regularization by projectio

Propagation of noise

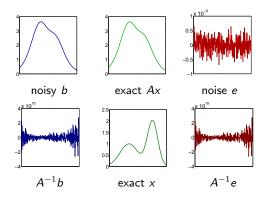
Residuals of selected methods

Conclusion 00

Naive solution - noise amplification

b = Ax + e, where $||Ax|| \gg ||e||$ BUT $A^{-1}b = x + A^{-1}e$, where $||x|| \ll ||A^{-1}e||$

1D Example: shaw(400), $\delta^{
m noise} pprox 1e-4$, white noise



Regularization by projectio

Propagation of noise

Residuals of selected methods

Conclusion 00

Naive solution - noise amplification

Singular value decomposition (SVD): $N = \min\{n, m\}$

$$A = U\Sigma V^{T} = \sum_{j=1}^{N} u_{j}^{T} \sigma_{j} v_{j},$$

$$\boldsymbol{\Sigma} = \mathsf{diag}\{\sigma_1, \ldots, \sigma_N\},$$

where $U = [u_1, \ldots, u_n]$ and $V = [v_1, \ldots, v_m]$ are unitary matrices. Then

$$x^{\text{naive}} \equiv A^{\dagger}b = \underbrace{\sum_{j=1}^{N} \frac{u_j^T b^{\text{exact}}}{\sigma_j}}_{x^{\text{exact}}} v_j + \underbrace{\sum_{j=1}^{N} \frac{u_j^T e}{\sigma_j}}_{\text{noise component}} v_j$$

Regularization by projection

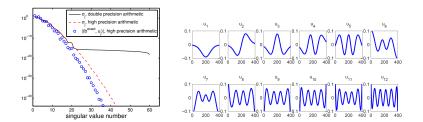
Propagation of noise

Residuals of selected methods

Conclusion 00

Discrete Picard condition (DPC)

- singular values of A decay quickly without a noticeable gap;
- singular vectors u_i , v_j of A represent increasing frequencies;
- for the exact right-hand side, $|(b^{\text{exact}}, u_j)|$ decay faster than the singular values σ_j of A (**DPC**)



Regularization by projection

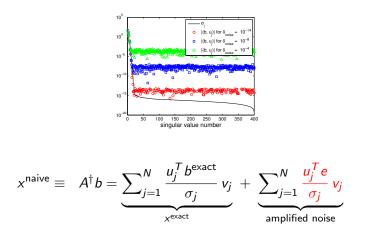
Propagation of noise

Residuals of selected methods

Conclusion 00

Noise amplification

White noise: $|(e, u_j)|, j = 1, ..., N$ do not exhibit any trend



Components corresponding to small σ_i 's are dominated by e^{HF} .

Regularization by projection •00000000

Propagation of noise

Residuals of selected method

Conclusion 00

Outline

1. Inverse problem

- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods
- 5. Conclusion

Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Classical regularization approaches

Spectral filtering (e.g., truncated SVD, Tikhonov): suitable for solving small ill-posed problems.

Projection on smooth subspaces: suitable for solving large ill-posed problems. The dimension of projection space represents a regularization parameter.

Hybrid techniques: combination of outer iterative regularization with a spectral filtering of the projected small problem.

... etc.

Regularization by projection

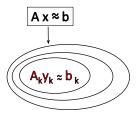
Propagation of noise

Residuals of selected methods

Conclusion 00

Regularization by Krylov subspace methods

When A is large/sparse/not given explicitly, approximation by projection onto a low dimensional Krylov subspace is advantageous.



$$\mathcal{K}_k(C,d) \equiv Span\{d, Cd, \ldots, C^{k-1}d\}$$

 $\mathcal{K}_1(\mathcal{C}, d) \subseteq \mathcal{K}_2(\mathcal{C}, d) \subseteq \ldots$

For A square: $\mathcal{K}_k(A, b) \dots$ GMRES, CG, MINRES $\vec{\mathcal{K}}_k(A, b) \dots$ RRGMRES, MINRES-II For A general: $\mathcal{K}_k(A^T A, A^T b) \dots$ LSQR, LSMR, CGLS $x_{\ell} \longrightarrow x^{\text{naive}}$

Regularization by projection

Propagation of noise

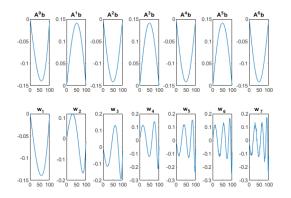
Residuals of selected methods

Conclusion 00

Key role of orthonormal basis

Generating Krylov vectors are smooth. In order to approximate less smooth features, it is necessary to use orthonormal basis.

Example: Generating vectors and orthonormal basis vectors w_i (computed by Arnoldi process) for $\mathcal{K}_5(A, b)$



Regularization by projection

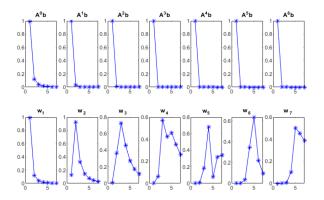
Propagation of noise

Residuals of selected methods

Conclusion 00

Key role of orthonormal basis

Example: Generating vectors and orthonormal basis vectors w_i in frequency basis U (left singular vectors of A)



Regularization by projection

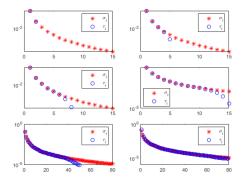
Propagation of noise

Residuals of selected methods

Conclusion 00

Inheritance of DPC

Example: Singular values σ_i of A and singular values τ_i of H_k from the Arnoldi process for k = 2, 5, 8, 5, 50, 80



The projected problem $A_k y_k \approx b_k$ then subsequently inherits DPC properties of the original problem.

Regularization by projection 000000000

Propagation of noise

Residuals of selected methods

Conclusion 00

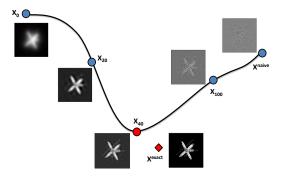
Semiconvergence of Krylov subspace methods

With growing k:

- we include HF features to the solution,
- noise *e* propagates to the projection.

small k = over-smoothed solution

large k = noisy solution



Regularization by projection

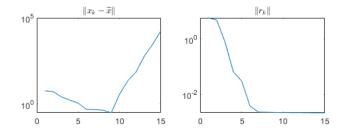
Propagation of noise

Residuals of selected methods

Conclusion 00

Semiconvergence of Krylov subspace methods

Example: True errors and residual norms of LSQR approximations x_k for the problem shaw(400) contaminated by white noise e



Number of iterations = regularization parameter

Regularization by projection

Propagation of noise

Residuals of selected method

Conclusion 00

Stopping criteria

Since $b - Ax^{exact} = e$, a reasonable requirement could be

$$\mathbf{r}_{\mathbf{k}} \equiv \mathbf{b} - \mathbf{A}\mathbf{x}_{\mathbf{k}} \approx \mathbf{e}.$$

Stopping criteria: this idea can be used if a priori information is available, e.g., ||e|| in DP, spectral properties of e (white) in NCP. However, e is often not known.

Undestanding noise propagation:

- consider $\mathcal{K}_k(A^T A, A^T b)$ for a general A,
- study how *e* propagates to the projections,
- study the relation between e and r_1, r_2, \ldots

Regularization by projection 000000000

Propagation of noise

Residuals of selected method

Conclusion 00

Outline

- 1. Inverse problem
- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods
- 5. Conclusion

Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Golub-Kahan iterative bidiagonalization (GK)

Given $w_0 = 0$, $s_1 = b / \beta_1$, $\beta_1 = ||b||$, for j = 1, 2, ...

$$\begin{aligned} \alpha_{j} w_{j} &= A^{T} s_{j} - \beta_{j} w_{j-1}, & \|w_{j}\| = 1, \\ \beta_{j+1} s_{j+1} &= A w_{j} - \alpha_{j} s_{j}, & \|s_{j+1}\| = 1. \end{aligned}$$

Output:

- $S_k = [s_1, \ldots, s_k]$ orthonormal bases of $\mathcal{K}(AA^T, b)$,
- $W_k = [w_1, \ldots, w_k]$ orthonormal bases of $\mathcal{K}(A^T A, A^T b)$,
- bidiagonal matrices of the normalization coefficients

$$L_{k} = \begin{bmatrix} \alpha_{1} & & \\ \beta_{2} & \alpha_{2} & & \\ & \ddots & \ddots & \\ & & \beta_{k} & \alpha_{k} \end{bmatrix}, \quad L_{k+} = \begin{bmatrix} L_{k} \\ e_{k}^{T} \beta_{k+1} \end{bmatrix}.$$

Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Regularization based on GK

 $x_k = W_k y_k$, where the columns of W_k span $\mathcal{K}_k(A^T A, A^T b)$

LSQR method: minimize the residual

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|Ax - b\| = \min_{y \in \mathbb{R}^k} \|L_{k+y} - \beta_1 e_1\|$$

CRAIG method: minimize the error

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|x^* - x\| = \min_{y \in \mathbb{R}^k} \|L_k y - \beta_1 e_1\|$$

LSMR method: minimize $A^T r_k$

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|A^T (Ax - b)\| = \min_{y \in \mathbb{R}^k} \|L_{k+1}^T L_{k+y} - \beta_1 \alpha_1 e_1\|$$

Regularization by projectio

Propagation of noise

Residuals of selected methods

Conclusion 00

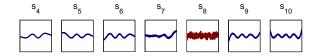
Noise propagation in GK

Recall that we are interested in the relation between

$$\tilde{r} \equiv b - A \tilde{x} \quad \longleftrightarrow \quad e.$$

Since $x_k = W_k y_k \in \mathcal{K}_k(A^T A, A^T b)$, then

 $\mathbf{r}_{k} \equiv \mathbf{b} - \mathbf{A} \mathbf{W}_{k} \mathbf{y}_{k} = \beta_{1} \mathbf{s}_{1} - \mathbf{S}_{k+1} \mathbf{L}_{k+} \mathbf{y}_{k} = \mathbf{S}_{k+1} \mathbf{p}_{k} \in \mathcal{K}_{k} (\mathbf{A} \mathbf{A}^{\mathsf{T}}, \mathbf{b}).$



Analyzed in [H., Plešinger, Strakoš - 09], [H., Plešinger, Kubínová - 17].

Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Exact and noise component in s_k

•
$$s_1 = b/||b|| = Ax/||b|| + e/||b||$$

• for $k = 2, 3, ...$

$$\beta_{k+1} \mathbf{s}_{k+1} = A \mathbf{w}_k - \alpha_k \mathbf{s}_k$$

Thus

$$s_k = (\cdot) + \gamma_k e^{HF}$$
, where $\gamma_k \equiv \varphi_{k-1}(0) = (-1)^{k-1} \frac{1}{\beta_k} \prod_{j=1}^{k-1} \frac{\alpha_j}{\beta_j}$

Here (·) is smooth and the amplification factor γ_k of e^{HF} is the absolute term of the Lanczos polynomial,

$$s_{k+1} = \varphi_k(AA^T)b, \qquad \varphi_k \in \mathcal{P}_k.$$

Regularization by projection

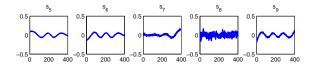
Propagation of noise

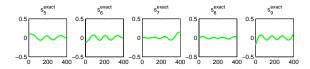
Residuals of selected methods

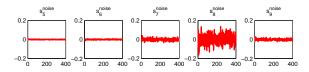
Conclusion 00

Exact and noise component in s_k

$$s_k = s_k^{exact} + s_k^{noise}$$







Regularization by projectior

Propagation of noise

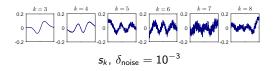
Residuals of selected methods

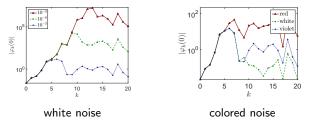
Conclusion 00

Noise propagation in GK - behavior

The size of γ_k (on average) rapidly grows until it reaches the noise revealing iteration k_{rev} . Then it decreases.

Example: shaw(400), reortogonalization in GK





Regularization by projection

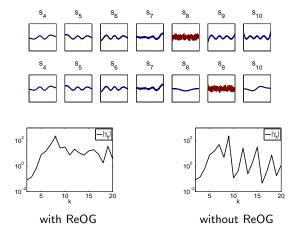
Propagation of noise

Residuals of selected methods

Conclusion 00

Influence of the loss of orthogonality

Comparison GK with and without reorthogonalization:



Aggregation may be necessary [Gergelits, H., Kubínová - 18].

Regularization by projectior

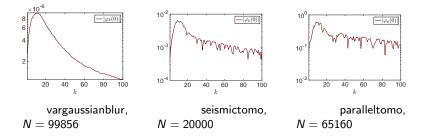
Propagation of noise

Residuals of selected methods

Conclusion 00

Noise propagation in GK - large 2D problems

Example: $\delta_{\text{noise}} \approx 10^{-2}$, various physical noise, without ReOG



There is no particular noise revealing iteration k, but rather a noise revealing phase represented by a group of subsequent iterations k, see [H., Plešinger, Kubínová - 17].

Regularization by projectior

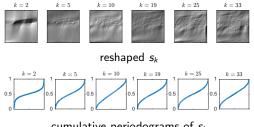
Propagation of noise

Residuals of selected methods

Conclusion 00

Noise propagation in GK - large 2D problems

Example: seismictomo, $\delta_{\text{noise}} \approx 10^{-2}$, without ReOG



cumulative periodograms of s_k

Cumulative periodogram (examining distribution of frequencies) of s_{10} is flatter, thus s_{10} belong to the noise revealing phase.

Regularization by projection

Propagation of noise

Conclusion 00

Application in regularization process

- Stopping criterion before noise propagates seriously to s_k .
- If k_{rev} can be identified, we can estimate the high frequency part of *e*:

$$s_{k_{
m rev}}~\equiv~(\cdot)+\gamma_{k_{
m rev}}e^{HF}~pprox~\gamma_{k_{
m rev}}e^{HF}$$

gives the estimate by scaled left bidiagonalization vector

$$ilde{e}\equiv\gamma_{k_{
m rev}}^{-1}s_{k_{
m rev}}.$$

 We can obtain a cheap estimate of the unknown noise level || e ||/|| b ||, see [H., Kubínová, Plešinger - 16] for application in image deblurring.

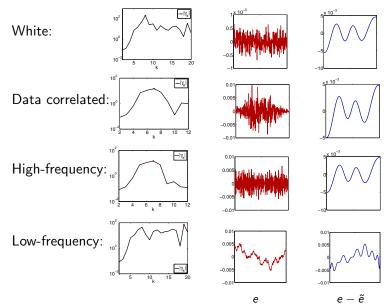
Regularization by projectio

Propagation of noise

Residuals of selected methods

Conclusion 00

Noise estimate for shaw(400)



34/49

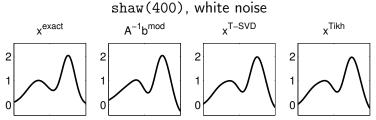
Regularization by projectio

Propagation of noise

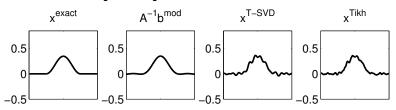
Residuals of selected method

Conclusion 00

Comparison of noise reduction to spectral filtering



phillips(400), white noise



Regularization by projection 00000000

Propagation of noise

Residuals of selected methods •0000000000 Conclusion 00

Outline

- 1. Inverse problem
- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods
- 5. Conclusion

Regularization by projection

Propagation of noise

Residuals of selected methods 0000000000

Conclusion 00

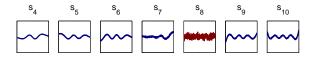
Regularization based on GK

Recall that we are interested in the relation between

 $\tilde{r} \equiv b - A\tilde{x} \quad \longleftrightarrow \quad e.$

For GK based methods with $x_k = W_k y_k \in \mathcal{K}_k(A^T A, A^T b)$, we have

 $r_k=S_{k+1}p_k.$



Based on noise propagation in S_k , we can analyze CRAIG, LSQR, LSMR by studing p_k , see in [H., Kubínová, Plešinger - 17].

Regularization by projection

Propagation of noise

Residuals of selected methods

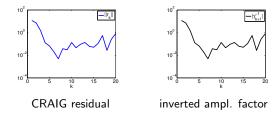
Conclusion

Residual of CRAIG method

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|x^* - x\| = \min_{y \in \mathbb{R}^k} \|L_k y - \beta_1 e_1\|, \quad x_k = W_k y_k$$

Theorem: x_k^{CRAIG} is the exact solution to the consistent system $Ax_k^{CRAIG} = b - \varphi_k(0)^{-1}s_{k+1}.$

Consequently, $||r_k^{\text{CRAIG}}|| = |\varphi_k(0)^{-1}| \equiv |\gamma_{k+1}|^{-1}$ reaches its minimum in the noise revealing iteration.



Regularization by projection

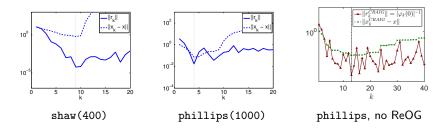
Propagation of noise

Residuals of selected methods

Conclusion 00

Comparison of the error and the residual

Measuring the size of the residual seems to be a valid stopping criterion for CRAIG. The minimal error is reached approximately at the iteration with the minimal residual.



Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Residual of LSQR method

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|Ax - b\| = \min_{y \in \mathbb{R}^k} \|L_{k+y} - \beta_1 e_1\|, \quad x_k = W_k y_k$$

Theorem: The residual corresponding to x_k^{LSQR} satisfies

$$r_k^{\text{LSQR}} = \frac{1}{\sum_{l=0}^k \varphi_l(0)^2} \sum_{l=0}^k \varphi_l(0) s_{l+1}.$$

Consequently, the size of the component of r_k in the direction of s_j is proportional to the amount of propagated noise e^{HF} in s_j .

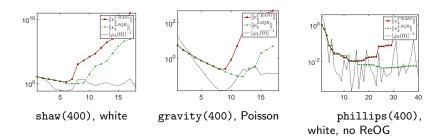
Regularization by projection

Propagation of noise 0000000000000 Residuals of selected methods

Conclusion 00

Comparison of CRAIG and LSQR

Typically, LSQR can reach better approximation than CRAIG.



Regularization by projection

Propagation of noise

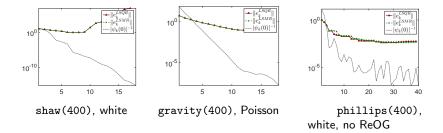
Residuals of selected methods

Conclusion 00

Residual of LSMR method

$$\min_{x \in \mathcal{K}_k(A^T A, A^T b)} \|A^T (Ax - b)\| = \min_{y \in \mathbb{R}^k} \|L_{k+1}^T L_{k+y} - \beta_1 \alpha_1 e_1\|$$

Components of r_k in LSMR behave similarly as in LSQR. The errors resemble as long as $|\psi_k(0)|$ (the absolute term of the Lanczos polynomial for GK vectors w_k) grows rapidly.



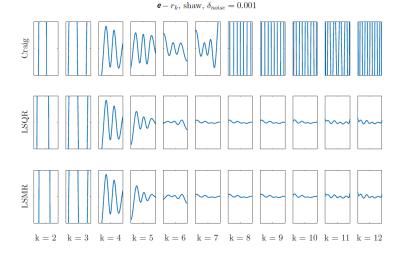
Regularization by projection

Propagation of noise

Residuals of selected methods

Conclusion 00

Comparison of noise and residuals



Regularization by projection

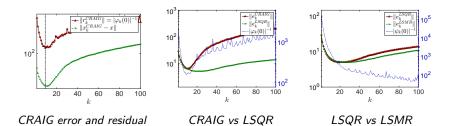
Propagation of noise

Residuals of selected methods

Conclusion 00

Comparison of the methods - large 2D problems

Example: seismictomo(100,100,200), additive white noise, $\delta_{\rm noise}=0.01,~A\in\mathbb{R}^{20000\times10000},$ no ReOG



Regularization by projectio

Propagation of noise

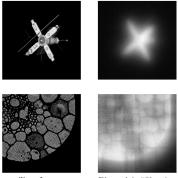
Residuals of selected methods

Conclusion 00

Hybrid methods

$\label{eq:Krylov subspace} \mbox{Krylov subspace} + \mbox{direct regularization of projected problem}$

Example: deblurring of noisy image



True Image

Blurred & 5% noise

Regularization by projection

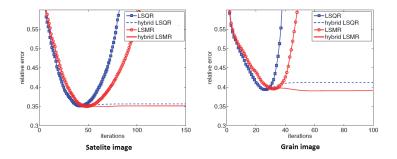
Propagation of noise

Residuals of selected methods

Conclusion 00

Hybrid methods

Example: LSQR and LSMR with inner Tikhonov regularization



- overcomes the semiconvergence phenomenon,
- two regularization parameters (outer number of iterations, inner - direct regularizer) must be tuned.

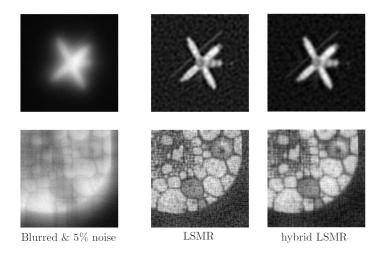
Regularization by projectio

Propagation of noise

Residuals of selected methods

Conclusion 00

Hybrid methods - reconstructions



Regularization by projection 00000000

Propagation of noise

Residuals of selected method

Conclusion

Outline

1. Inverse problem

- 2. Regularization by projection
- 3. Propagation of noise
- 4. Residuals of selected methods

5. Conclusion

Regularization by projection

Propagation of noise

Residuals of selected method

Conclusion

Conclusion

- Various Krylov subspaces methods on orthonormal bases have regularizing properties.
- Noise propagates subsequentially, early stopping is necessary.
- Combinations with direct regularization are advantageous.
- Constraints (e.g. nonnegativity or sparsity of the solution) can be incorporated.

Thank you for your attention!