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Motivation



Localities CR
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HL nuclear waste storage
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Deep Geological Repository
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CouFrac 2018 & SI Comp. Geosciences
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CouFrac 2018, Wuhan
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Poroelasticity - hydro-mechanics

linear models / linear couplings



Darcy flow

One-field formulation p - pressure in fluid

cpp
∂

∂t
p = div(κ∇p) + fp in Ω× T .

Two-field formulation (p, v) - pressure & velocity

κ−1v +∇p = 0,

div(v) +cpp
∂
∂t p = fp,

in Ω× T .

κ represents hydraulic conductivity, cpp storativity , fp is a source term.

Boundary-initial conditions

p = p̂ on Γp, v · n = −κ∇p · n = v̂ on Γv , (1)

p(x , 0) = p0(x). (2)
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Poro-elasticity

Two-field formulation (u, p) - displacement and pore fluid pressure

−div(C : ε(u)) +∇(αp) = fu,

α ∂
∂t div(u) +cpp

∂
∂t p − div(κ∇p) = fp,

three-field fomulation

−div(C : ε(u)) +∇(αp) = fu,

κ−1v +∇p = 0,

α ∂
∂t div(u) +div(v) +cpp

∂
∂t p = fp.

The Terzaghi-Biot model, linear couplings: (1) effective stress

σ = σeff − αpI

(2) change of bulk volumes ⇒ change of pore (fluid) volumes, flow

induced by deformation

4V /V =
∂

∂t
εv =

∂

∂t
div(u)

4Vp

V
=
4V −4Vs

V
=
4V

V

(
1− 4Vs

4V

)
=
4V

V

(
1− 4σ/Ks

4σ/Kb

)
= α
4V

V
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Variational formulation of two-field poro-elasticity

For a.e. t ∈ T = 〈0, tmax〉 find (u(t, ·), p(t, ·)) ∈ UD ×WD such that
∂
∂t p ∈ L2(Ω) and

au(u, w) + (∇(αp), w) = Fu(w) ∀w ∈ U0,

(cpp
∂
∂t p, q)+ ( ∂∂t (αdiv(u)) , q) + ap(p, q) = Fp(q) ∀q ∈W0.

where (·, ·) denotes the inner product in L2(Ω),

au(u,w) =

∫
Ω

Cε(u) : ε(w) dx , ap(p, q) =

∫
Ω

κ∇p · ∇q dx

u,w ∈ U = [H1(Ω)]d , p, q ∈W = H1(Ω). Moreover,

U tD = {u ∈ U , u = û(t) on Γu}, U0 = {u ∈ U , u = 0 on Γu},
WD = {p ∈W , p = p̂(t) on Γp}, W0 = {p ∈W , p) = 0 on Γp}.

For existence and uniqueness see

• Zenisek, A.: The existence and uniqueness theorem in Biot’s consolidation theory. Apl. Mat.

3(29), 194–211 (1984) - with cpp = 0

• Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 1(251), 310–340

(2000)
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Semi-discretization: time stepping algorithm

Step 0

(u0, w) = (u0, w) ∀w ∈ U0, (p0, q) = (p0, q) ∀q ∈ V0.

Step k > 0

au(uk , w) + b1(w , p) = F k
u (w) ∀w ∈ U0,

b(uk , q)− c(pk , q) = F k
p (q) ∀q ∈W0,

Next time step

c(pk , q) = (cppp
k , q) + τkap(pk , q)

Nonsymmetry b1 6= b

(∇(αp), w) =
∫
∂Ω

αpw · n dx −
∫
Ω

αpdiv(w) dx =
∫
∂Ω

αpw · n dx + b(w , p)

=
∫

∂Ω\Γpu

αpw · n dx+b(w , p) = b1(w , p), p = 0 or u · n = 0 on Γpu
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Terzaghi problem - 1D poro-elasticity

• P.M. Delgado V. M. Krushnarao Kotteda, V. Kumar, Hybrid Fixed-Point

Fixed-Stress Splitting Method for Linear Poroelasticity. Geosciences 2019

• Cheng An, P. Zhou, B. Yan, Y. Wang, J. Killough, Adaptive Time Stepping with

the Modified Local Error Method for Coupled Flow-Geomechanics Modeling.

Conference SPE-186030-MS, 2017

RB Numerical methods for hydro-mechanics in standard and disturbed continua 11/46



Full discretization

FE spaces Uh, Uh
0 and V h, V h

0 , algebraic spaces X = Rn and Y = Rm,

u ∈ X ↔ ufem ∈ Uh and p ∈ Y ↔ pfem ∈Wh.

au ↔ Au, ap ↔ Ap,
∫
Ω

u · w ↔ Mu, (·, ·)2,0 ↔ Mp,
∫
Ω

∇(αq) · w ↔ BT
1 ,∫

Ω

αdiv(w)q ↔ B2

Time stepping algorithm in discrete form

• Step 0

• For k = 1, 2, . . .

• Step k > 0: find (uk , pk ) ∈ X × Y such that[
Au BT

1

B2 −C

][
uk

pk

]
=

[
v

p

]
,

where C = cppMp + τkAp

• Next time step
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Analysis of the saddle point problem I

Problem formulation with two bilinear forms: Find (u, p) ∈ U0 ×W0

(P1)
a(u, v) + b(v , p) = f (v) ∀v ∈ U0

b(u, q)− c(p, q) = g(q) ∀q ∈W0

Problem formulation with one bilinear form: Find (u, p) ∈ U0 ×W0

(P2) A((u, p), (v , q)) = F (v , q) ∀(v , q) ∈ U × P

A((u, p), (v , q)) = a(u, v) + b(v , p)− b(u, q) + c(p, q)

F (v , q) = f (v)− g(q)

Theorem: The problems (P1) and (P2) are equivalent and have a unique

solution.
A((u, p), (v , 0)) = a(u, v) + b(v , p) = f (v)

A((u, p), (0, q)) = b(u, q)− c(p, q) = g(q)

A((u, p), (v , 0) + (0, q)) = F (v , q)

+ Lax-Milgramm lemma for problem (P2)
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Analysis of the saddle point problem II

• According to the previous Theorem there is a unique solution, but

the stability depends on c ,

γu ‖u‖2,1 + γp ‖p‖2,1 ≤
1

γu
‖f ‖2,0 +

1

γp
‖g‖2,0 ,

see [Boffi, Brezzi, Fortin], γu and γp are elipticity constants.

• Inf-sup - ex. β > 0

??? sup
w∈U

(div(w), p)

‖w‖2,1

≥ β ‖p‖2,1 ,

• Note that

• C becomes close to zero if cpp and τkκ are small.

• For P1/P1 finite element pairs instability was observed if C ∼ 0.

• Robustness w.r.t. discretization and problem parameters.

• Recent results for 2 and 3 field poroelasticity
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Spurious oscillations in computed pressure

C. Rodrigo et al. / Comput. Methods Appl. Mech. Engrg. 298 (2016) 183–204
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PDE system for 3-field poroelasticity

Physical structure - putting elasticty and flow together

−divC : ε(u) +cup∇p = fm,

K−1v +∇p = 0,

−cpu
∂
∂t div(u) −div(v) −cpp

∂
∂t p = −fs

Analytical structure

−divC : ε(u) +cup∇p = fm,

K−1v +∇p = 0,

−cpu
∂
∂t div(u) −div(v) −cpp

∂
∂t p = −fs
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Semidiscretization and variational formulation

In time steps k = 1, 2, . . . find

uk ∈ UD ⊂ H1(Ω), vk ∈ Vbc ⊂ H(div , Ω), pk ∈ Q = L2(Ω)

au(uk , η) −(div(η), pk ) = f k (η)

m(vk ,w) −(div(w), pk ) = G k (w),

− 1
τ (div(uk ), q) −(div(vk ), q) − 1

τ (cppp, q) = −f k
s (q) + . . .

∀η ∈ U0, ∀w ∈ V0, ∀q ∈ Q

Here we found the already defined bilinear forms of elasticity au , mass

matrix of velocities m, etc.

m(v , w) =

∫
Ω

k−1v · w dΩ, bu(u, p) = (div(u), p),

bv (v , p) = (div(v), p), c(p, q) = (cppp, q)

Possible nonsymmetry bu and bu1. Another nonsymmetry due to τ can

be removed by scaling with diag(1, τ, τ).
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Analysis of variational formulation

Consider the arrangement ((u, v), p) ∈ V×W ,

Vbc = UD × Vbc , V0 = U0 × V0

‖((u, v)‖2
V = ‖u‖2

H1(Ω) + ‖v‖2
H(div ,Ω), ‖q‖W = ‖q‖2,0

Define the bilinear forms

A((u, v), (η,w)) = a(u, η) + τm(v ,w)

B((u, v), q) = bu(u, q) + τbv (v , q)

Variational formulation - find (u, v) ∈ Vbc , p ∈WD

A((u, v), (η,w)) +B((η,w), p) = f k (η) + G k (w),

B((u, v), q) − cpp

τ (p, q) = −F k
s (p) + . . .

∀ (η, w) ∈ V0, q ∈W
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Babuška-Brezzi theory for poroelasticity

Z = {(η,w) : B((η,w), q) = 0 ∀q ∈W }
(div(u), q) = −τ(div(v), q) ∀q ∈W

Coerciveness on Z

A((u, v), (η,w)) = a(u, u) + τm(v , v)≥ γu ‖u‖2
H1(Ω) + τγv ‖v‖2

L2(Ω)

≥ γ
(
‖u‖2

H1(Ω) + ‖div(u)‖2
L2(Ω) + ‖v‖2

L2(Ω)

)
= γ

(
‖u‖2

H1(Ω) + ‖v‖2
H(div ,Ω)

)
= γ ‖((u, v)‖2

V

LBB

sup
(η,w)∈V

|B((η,w),p)|
‖(η,v)‖V

≥ sup
(0,w)∈V

|B((0,w),p)|
‖(0,v)‖V

≥ β ‖p‖W
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Locking and nonconforming FEM for poroelasticity

• Discretization with P1/P1 and P1/RT0/P0 may cause locking effect

in poroelasticity, pressure oscillations for a two- and three-field Biot’s

model, not parameter robustness

• recent papers

• X. Hua, C. Rodrigo, FJ. Gaspar, LT. Zikatanov, JCAM 310 (2017)

143–154, Crouzeix–Raviart (CR) FEM for elasticity

• C. Rodrigo, X. Hu, P. Ohm, JH. Adler, FJ. Gaspar, L. Zikatanov,

New stabilized discretizations for poroelasticity and the Stokes’

equations, arXiv:1706.05169 [math.NA] 2017 (P1 elements enriched

by bubbles)

• C. Rodrigo, X., FJ. Gaspar, X. Hu, L. Zikatanov, Stability and

monotonicity for some discretizations of the Biot’s consolidation

model. Comput. Methods Appl. Mech. Engrg. 298 (2016) 183–204
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Iterative coupling



Iterative coupling for linear/linear HM

P.M. Delgado V. M. Krushnarao Kotteda, V. Kumar, Hybrid Fixed-Point Fixed-Stress Splitting Method for Linear Poroelasticity.

Geosciences 2019
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Iterative coupling for linear/linear HM

• full coupling, monolithic scheme

• iterative coupling

• staggered scheme (one pass, one iteration)

• loose coupling (one process is updated after several time steps)
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Gauss-Seidel for semidiscretization

au(uk , w) + b1(w , pk ) = F k
u (w) ∀w ∈ U0,

b(uk , q)− c(pk , q) = F k
p (q) ∀q ∈W0,

can be solved iteratively, e.g. using the inital guess

uk,0 = uk−1, pk,0 = pk−1

and e.g. iterations for i = 0, 1, . . .

au(uk,i+1, w) + b1(w , pk,i+1) = F k
u (w) ∀w ∈ U0,

b(uk,i , q)− c(pk,i+1, q) = F k
p (q) ∀q ∈W0,
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Gauss-Seidel for algebraic form

Az =

[
Au BT

1

B2 −C

][
uk

pk

]
=

[
f k
u

f k
p

]
= Fk .

Note that if Au is regular and C + B2A
−1
u BT

1 is regular, then A is regular

(block elimination, factorization).

zk,i+1 = zk,i + ω

[
Au BT

1

−C

]−1 (
Fk −Azk,i

)
,
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Uzawa iterations

For C ∼ 0 or C = 0 it is possible to use the iterations

zk,i+1 = zk,i +

[
Au BT

1

−(ω−1P + C )

]−1 (
Fk −Azk,i

)
.

Here ω > 0 and ω−1P ∼ B2A
−1
u BT

1 of the Schur complement component.

If u?, p?is the exact solution, e i
u = ui − u? and e i

p = pi − p? are the

components of the error, then

e i+1
u = −A−1

u BT
1 e i

p

e i+1
p = (ω−1P + C )−1

(
ω−1P + C − (C + B2A

−1
u BT

1 )
)
e i

p.

If B1 = B2 = B, Au is SPD, C is SPSD and P = I then the Uzawa

method can be reducted to Richardson method the equation for p,

e i+1
p = (I − ωBA−1

u BT )e i
p, convergence for ω <

2

λmax (BA−1
u BT )

.
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Schur complement preconditioners

Au−p =

[
Au BT

1

B2 −C

]
=

[
I

B2A
−1
u I

][
Au

−SA

][
I A−1

u BT
1

I

]
.

Note that for 2-field poroelasticity we prefer this factorization with the

Schur complement S = SA = C + B2A
−1
u BT

1 as

• (1) C can be close to zero and SA provides a stabilization of C ,

• (2) there is a good approximation to B2A
−1
u BT

1 , B2A
−1
u BT

1 ∼ Mp.

PT =

[
Au

−SA

][
I A−1

u BT
1

I

]
=

[
Au BT

1

−SA

]
,

PD =

[
Au

−SA

]
.
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Sparse approximation for the Schur complement

Theorem [Elman, Silvestr, Wathen, Finite Elements and Fast Iterative Solvers]:

C ≤ C + BA−1
u BT ≤ C + 1

c Mp

βMp ≤ BA−1
u BT ≤ 1

c
Mp

Proof.
〈Bw , q〉2 = (αdiv(w), q)2

≤ α
λau(w , w)(q, q) = 1

c 〈Auw , w〉 〈Mpq, q〉

Taking w = A−1
u BTq, we get〈
BA−1

u BTq, q
〉2 ≤ 1

c

〈
BT

1 q, A−1
u BT

1 q
〉
〈Apq, q〉 .

If the (Stokes type) inf-sup condition is valid,

supw
(αdiv(w), q)
au(w ,w)1/2 = supw

〈Bw ,q〉
〈Auw ,w〉1/2 ≥

〈BA−1
u BT q,q〉

〈BT q,A−1
u BT q〉1/2

=
〈
BA−1

u BTq, q
〉1/2 ≥ β 〈Mpq, q〉1/2
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Analysis of diagonal preconditioner

Let

M =

[
A11 A12

A21 A22

]
, P =

[
Ã11

−A22

]
with A11, −A22, Ã11 being SPD,

Lemma 1: Let Ã11 = S = A11 − A21A
−1
22 A12, then

σ(P−1M) ⊂

〈
−1−

√
5

2
,−1

〉
∪

〈
−1 +

√
5

2
, 1

〉

Lemma 2: Let there be ξ0, ξ1 > 0 such that ξ0S ≤ Ã11 ≤ ξ1S , then

σ(P−1M) ⊂

〈
−1

2
− 1

2

√
1 +

4

ξ0
, −1

〉
∪

〈
−1

2
+

1

2

√
1 +

4

ξ1
,

1

ξ0

〉

RB: Report IGAS 2012, 2015. Note in the case A22 = 0, there is result from M. F. Murphy, G. H.

Golub, and A. J. Wathen, SIAM J. Sci. Comput., 21 (2000)
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Block triangular preconditioners

Au−pP−1
t =

[
I

B2A
−1
u I

]
= I + X ,

X =

[
0

B2A
−1
u 0

]
, X 2 = 0.

• Right preconditioned system Au−pP−1
t has minimal polynomial

p(λ) = (λ− 1)2,

• For the left preconditioning, P−1
t Au−p = P−1

t

(
Au−pP−1

t

)
Pt ,

therefore p
(
P−1

t Au−p

)
= P−1

t p
(
Au−pP−1

t

)
Pt = 0, i.e. left

preconditioned system has also minimal polynomial of order 2.

• Inexact solution of the block subproblems?

• Spectral analysis [Axelsson], analysis through field of values [Rodrigo

et al.]
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Discrete 3-field poroelasticity system

The space discretization provides DAE

A1
∂

∂t
U +A0U = F

with the matrices A1and A0 and blocks A↔ a, M ↔ m, Bu ↔ bu ,

Bv ↔ bv , C ↔ c ,

A1 =

 0 0 0

0 0 0

Bu 0 −C

 , A0 =

A 0 BT
u

0 M BT

0 B 0

 , U =

uv
p


Backward Euler provides in k+1th step the system

(A1 + τA0)Uk+1 = F(tk+1) +A1Uk

with the Euler matrix AE ,

Aτ =

 A 0 BT
u

0 M BT

1
τ Bu B − 1

τ C

 =

1

1/τ

1/τ


 A 0 BT

u

0 τM τBT

Bu τB −C


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Preconditioners

There are several block type preconditioners for the symmetrized Euler

matrix

AE = Asym
τ =

 A 0 BT
u

0 τM τBT

Bu τB −C

 .
Restricting to block diagonal, SPD ones, we can consider

P =

A 0

0 τM

SAM

 or P =

S11 S12

S21 S22

C

 or P =

S11 S12

S22

C



P =

A + BT
u C−1Bu τBT

u C−1B

τM + τ 2BTC−1B

C


O. Axelsson, RB, P. Byczanski, Computing and Visualization in Science. Vol. 15, No. 4 (2012),

pp. 191-207
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Diagonalization

• There is spectral equivalence1

(1− γ)

[
S11

S22

]
≤

[
S11 S12

S21 S22

]
≤ (1 + γ)

[
S11

S22

]
,

where 0 ≤ γ < 1 such that

|〈S12v , u〉| ≤ γ
√
〈S11u, u〉

√
〈S22v , v〉 ∀u, v ,

γ2 ≤ (1 + cppcel )
−1
, where cel ‖div(uh)‖2

L2
≤ 〈Au, u〉

For isotropic elasticity with Lamè constants λ and µ, cel ≥ λ.

• Robustness w.r.t. k and h

• Typical values2 of storativity and λ = Eν
(1−2ν)(1+ν) ,

cpp ∼ 10−6 − 10−4 , cel ∼ 106 − 109⇒ γ ≤ (�)1/2

(1) O. Axelsson, RB, T. Luber, LSSC 2015, LNCS 9374, Springer, 2015, pp. 3-14,

(2) Data Collection Handbook to Support Modelling Impacts of Radioactive Material in Soil and

Building Structures, Argonne Nat. Lab. 2015
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Fixed strain iterations

The Gauss-Seidel method,

zk,i+1 = zk,i +

[
Au BT

1

−C

]−1 (
Fk −Azk,i

)
,

uses triangular preconditioner which requires to solve the system with C

or in the variational form

−c(pk,i+1, q) = −(cppp
k,i+1, q)− τkap(pk,i+1, q) = Rk

p (q) ∀q ∈W0.

Such equation correspond to PDE

α
∂

∂t
div(u)︸ ︷︷ ︸
=0

+cpp
∂

∂t
p − div(κ∇p) = rp.

With respect to α ∂
∂t div(u) = 0 , the procedure is called fixed strain

iterations.
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Fixed stress iterations

We already know, that better preconditioning should use the Schur

complement SA, or its sparse approximation, instead of C alone. Such

sparse approximation of SA can be also derived as follows:

The volume deformation is in a relation with volumetric stress,

∂

∂t
σvol = Kb

∂

∂t
div(u)− α ∂

∂t
p,

where Kb is the bulk modulus of the porous material, which can be

expressed through Lame moduli as Kb = λ+ 2
3µ.

The assumption ∂
∂tσvol = 0, fixed stress, then provides

K ∂
∂t div(u) = α

K
∂
∂t p and(

cpp +
α2

K

)
∂

∂t
p − div(κ∇p) = rp.
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Fixed stress iterations

Variationally, pk,i+1 is computed from

−c(pk,i+1, q) = −(

(
cpp +

α2

K

)
pk,i+1, q)− τkap(pk,i+1, q) = Rk

p (q) ∀q ∈W0.

Consequently, the triangular preconditioner uses modified C̃ which is a

sparse matrix approximation to SA.

The additional term is algebraically α2

K Mp and it can be used for

modification of the original discretized system, which gets the form

Az =

[
Au BT

1

B2 −C − α2

K Mp

][
uk

pk

]
=

[
f k
u

f k
p

]
−

[
0 0

0 −α
2

K Mp

][
uk

pk

]
.

The Gauss-Seidel method then get the form[
Au BT

1

−C̃

]
zk,i+1 =

[
f k
u

f k
p

]
−

[
0 0

B2 −α
2

K Mp

]
zk,i .
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HO time discretizarion

Backward Euler time discretization - time step systems:

AEUk+1 = Fk+1 +
1

τ
A1Uk

AE =
1

τ
A1 +A =

[
M BT

B − 1
τ C

]
Radau IIA time discretization uses time step with two substeps[

1
τA1 + 5

12A − 1
12A

3
4A

1
τA1 + 1

4A

][
Uk+1/3

Uk+1

]
= RHS

Block diagonal and triangular preconditioners with Euler type blocks on

the diagonal are introduced and analyzed in Axelsson, Blaheta and

Luber1.

1O. Axelsson, RB and T. Luber, I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp.

3–14, Springer 2015.
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Nonlinear Hydromechanics



Hydro-mechanics with nonlinearities

• linear models - linear couplings (poroelasticity)

• non-linear models - linear couplings (Richards model, multiphase

model)

• linear models - non-linear couplings

• non-linear models - non-linear couplings

Examples of nonlinearities can be different

1. nonlinear elasticity with variable bulk modulus

2. plasticity

3. unsaturated Richards model

4. two-phase flow

5. Kozeny-Carman

6. cubic law
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Time-stepping and nonlinearity

Time stepping algorithm in discrete form

• Step 0

• For k = 1, 2, . . .

• Step k > 0: find (uk , pk ) ∈ X × Y which solve the nonlinear system[
Au(uk , pk ) BT

B −C(uk , pk )

][
uk

pk

]
=

[
f k

g k

]
,

G(zk )zk = Fk , zk =

[
uk

pk

]
,

where C(uk , pk ) = cppMp + τkAp(uk , pk )

end time stepping
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Picard and Newton methods

Time stepping algorithm with nonlinear iterations

• Step 0

• For k = 1, 2, . . .

• Step k > 0: find (uk , pk ) ∈ X × Y by iterations:

take uk,0 and pk,0

iterate for l = 0, 1, 2, . . .

zk,l+1 = zk,l +D(zk )−1
(
Fk − G(zk )

)
, D = DG.

end time stepping
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Nonlinear couplings, Biot-Kozeny model

We shall consider the model with conductivity depending on volumetric

deformation, κ = κ(∇ · u),

ap(p, q) = (κ(∇ · u)∇p, ∇q)2,0.

The function κ is assumed to be continuously differentiable,

κmin ≤ κ ≤ κmax more properties of κ will be specified later.

Particularly, κ can be determined by Kozeny-Carman formula,

κ = κ0
(1− φ0)2

φ3
0

φ3

(1− φ)2
,

where φ0 is the initial porosity giving the conductivity κ0,

φ = φ0 + α∇ · u.

• Josef Kozeny 1927, Prof. at U of Agricultural Sciences in Vienna, since 1929 at

TU Vienna.

• Philipe Carman, 1937 (modified equation), 1956. Prof. at University College

London, UCL Department of Chemical Engineering.
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Picard method for Biot-Kozeny model

au(uk , w) + b1(w , pk ) = F k
u (w) ∀w ∈ U0,

b(uk , q)− c(uk ; pk , q) = F k
p (q) ∀q ∈W0

(3)

with nonlinearity involved in

c(uk ; pk , q) = ((cpp + m)pk , q) + τk (κ(∇ · uk )∇pk , ∇q),

where m = α2

Kb
is the fixed stress stabilization term.

Picard method with iterations l = 1, 2, . . .

au(uk,l , w) + b1(w , pk,l ) = F k
u (w) ∀w ,

b(uk,l , q)− ((cpp + m)pk,l , q)− τk (κ(∇ · uk,l−1)∇pk,l , ∇q) = F k
p (q) ∀q.
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Picard method for Biot-Kozeny model

Theorem

Let ξ = τk
c2

2

κminλ
< 1 then for l →∞,

cFu

∥∥ek,l
u

∥∥
2,1
≤
∥∥ek,l

u

∥∥
au
→ 0

and

cFp

∥∥ek,l
p

∥∥
2,1
≤
∥∥∇ek,l

p

∥∥
2,0
≤ c2

2

κminλ

∥∥ek,l−1
u

∥∥
au
→ 0,

where cFu and cFp are constants from the corresponding Korn and

Friedrichs identities, The linear convergence of both uk,l → uk and

pk,l → pk in the Sobolev H1-norms is proven.

RB Numerical methods for hydro-mechanics in standard and disturbed continua 42/46



Disturbed continua



Models for disturbed zones / fractures

We can consider Biot-Kozeny as a simple possibility to model Faults /

Fractures:

• Mechanically F/F behaves as a week material. It can be modified to

material which becomes stiffer when F/F is closing,

• Hydraulic conductivity is decreasing with closing the F/F

(volumetric change), the flow in F/F communicate with the flow in

the porous matrix,

• Couplings are given by fluid pressure contributing to the total stress,

change of conductivity with pore space change and fluid movement

due to opening or closing of pores inside F/F.
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Models for disturbed zones / fractures

In the model from [Comp. Geosciences 2020]

we consider the steady regime which is still

described by two-way coupling as mechanics

influence the conductivity (not the case of

poroelasticity). This model assumes that:

• Mechanically F/F behaves without its own response to outer load,

mutual penetration of F/F walls is avoided by Signorini type

conditions,

• Hydraulic conductivity is connected with aperture (cubic law) and

decreasing with closing the F/F (decreasing aperture), the flow in

F/F communicate with the flow in the porous matrix,

• The coupling is due to fluid pressure on F/F walls and change of

conductivity with the change of aperture.
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Applications



Decovalex 2011-2019
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Gaps - DECOVALEX 2015 - SEALEX
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Conclusions

Important applications in geomechanics (nuclear waste, geothermal

energy, energy accummulation), biomechanics etc.

Interesting mathematics

• coupled processes,

• saddle point structure, stable discretization

• three levels of iterative methods - (1) nonlinear, (2) linear systems,

(3) solution of individual block systems,

• robustness w.r.t. discretization, convergence of iterative solvers

Faults / fractures in granite type rocks - TACR ENDORSE, H2020

EURAD

Thank you for your attention !


	Motivation
	Poroelasticity - hydro-mechanics linear models / linear couplings
	Iterative coupling
	Nonlinear Hydromechanics
	Disturbed continua
	Applications
	Appendix

