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homogeneous blocks
Variability of geological
properties
Characteristics of water
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transport
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Deep Geological Repository 0‘&‘,}

Nuclear waste deposition - barriers
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sealing structures
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CouFrac 2018 & SI Comp. Geosciences
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 Flow in porous media with fractures

« Fractures as domains of reduced
dimension

- Mechanics — elasticity + contact on
fractures

O B N W A U O N ®

- |terative coupling of flow + mechanics
- Bayesian inversion

+ R. Blaheta - M. Béres - S. Domesova - D. Horak:
Bayesian inversion for steady flow in fractured
porous media with contact on fractures and hydro-
mechanical coupling. Computational Geosciences
2020, on-line

https://doi.org/10.1007/s10596-020-09935-8
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CouFrac 2018, Wuhan
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Poroelasticity - hydro-mechanics
linear models / linear couplings




Darcy flow G‘C‘i\l:

One-field formulation p - pressure in fluid

cpp%p =div(kVp)+ 1, inQx T.
Two-field formulation (p, v) - pressure & velocity

Kty +Vp

_ po=0 anT
div(v) +copzp = fo

k represents hydraulic conductivity, cpp storativity , f, is a source term.
Boundary-initial conditions

p=ponl, v-n=—-kVp-n=Vonl,, (1)

p(x,0) = po(x). ()
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Poro-elasticity

AN

UGN
Two-field formulation (u, p) - displacement and pore fluid pressure
—div(C : e(u)) +V(ap) = fy,
a%div(u) +cpp%p —div(kVp) =1,
three-field fomulation
—div(C : e(u)) +V(ap) =1y,
Ky +Vp =0,
aZdiv(u) +div(v) 4cpp =ty
The Terzaghi-Biot model, linear couplings: (1) effective stress
0 = 0er — apl
(2) change of bulk volumes = change of pore (fluid) volumes, flow
induced by deformation
AV/]V = 25 = 2div(u)
otV ot
AV, AV -AVs AV 1 AVs\ AV Ao/Ks\ = AV
v %4 Y AV )V No/Ky) —V
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Variational formulation of two-field poro-elasticity
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U

GN

RB

Forae. t€ T = (0, tmax) find (u(t,-), p(t,-)) € Up x Wp such that
2p e [%(Q) and

ay(u, w) + (V(ap), w) = Fu(w) Yw € Uy,
(Cpp%pv q)+ (% (adiv(u)), q) +ap(p, q) = Fo(q) Vqe Wo.

where (-, -) denotes the inner product in L,(Q),

ay(u, w) :/Ce(u) ce(w)dx, ap(p,q) :/an'qux
Q Q

u,w e U=[H Q)] p,ge W = HYQ). Moreover,

Up={uecU,u=10a(t) onT,}, Ug={uecU,u=0 onl,},
Wp={peW,p=p(t) onT,}, Wo={pe W, p)=0 onl,}.

For existence and uniqueness see

® Zenisek, A.: The existence and uniqueness theorem in Biot's consolidation theory. Apl. Mat.

3(29), 194-211 (1984) - with ¢, =0
® Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 1(251), 310-340
(2000)
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z

Semi-discretization: time stepping algorithm

c.
(9}
Ze

Step 0

(uoa W) = (Uo, W) Yw € U07 (p07 q) = (p07 q) Vq € VO'

Step kK >0
au(ukv W) + bl(Wap) = Fuk(W) Yw € UOa
b(u*, q) — c(p*, q) = FX(q) Vg € Wy,

Next time step

c(p*. q) = (copP*, @) + Tkap(p", q)

Nonsymmetry by # b
(V(ap), w) = [ apw - ndx — [ apdiv(w)dx = [ apw - ndx + b(w, p)
00 Q o9
= [ apw-ndx+b(w,p)=bi(w,p), p=0or u-n=0o0nTp,
OQ\T pu
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Terzaghi problem - 1D poro-elasticity ﬁ‘c‘;\h

lllll

Drainage
boundary

p=0

pressure

time

No flow No displacement
at two sides at two sides

u-n=>0

pressure

time

1 pressure

time

No Flow, No displacement boundary

® P.M. Delgado V. M. Krushnarao Kotteda, V. Kumar, Hybrid Fixed-Point
Fixed-Stress Splitting Method for Linear Poroelasticity. Geosciences 2019

® Cheng An, P. Zhou, B. Yan, Y. Wang, J. Killough, Adaptive Time Stepping with
the Modified Local Error Method for Coupled Flow-Geomechanics Modeling.
Conference SPE-186030-MS, 2017
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Full discretization l:lC‘i\I:

FE spaces U", U} and V", V{§, algebraic spaces X = R" and Y = R™,

u€e X< Uem € Upand p € Y < prem € W,

au < A ap & Ap, Ju-w e My, ()20 < My, [V(ag) - w < B,
Q Q

[ adiv(w)q <> By
Q

Time stepping algorithm in discrete form
e Step 0
e For k=1,2,...
e Step k > 0: find (u*, p¥) € X x Y such that

o)1)

A, Bl
B, —C

where C = ¢,,M, + T A,

e Next time step
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Analysis of the saddle point problem | g‘c‘;\h

Problem formulation with two bilinear forms: Find (u, p) € Uy x W

(P1) a(u,v) + b(v,p) =f(v) Vvel
b(u,q) —c(p,q) =g(q) Vge W

Problem formulation with one bilinear form: Find (u, p) € Uy x W

(P2) A((u,p).(v,q))=F(v,q)  V(v.q)eUxP

A((u,p),(v,q)) = a(u,v)+ b(v,p) = b(u,q) + c(p,q)
F(v,q) = f(v)—gl(q)

Theorem: The problems (P1) and (P2) are equivalent and have a unique

solution.
A((u, p), (v,0)) = a(u, v) + b(v, p) = f(v)
A((u,p),(0,9)) = b(u,q) — c(p,q) = g(q)
A((u, p), (v,0) +(0,9)) = F(v,q)

+ Lax-Milgramm lemma for problem (P2)
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Analysis of the saddle point problem Il
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e According to the previous Theorem there is a unique solution, but
the stability depends on c,

1 1
Yullully s+ Pl < — Ifllo + — 11820
Yu Tp
see [Boffi, Brezzi, Fortin], -, and vp are elipticity constants.
e Inf-sup-ex. >0
77 sup (VW) p)

> Blpll
weu  [wllag 2

e Note that

C becomes close to zero if cpp and 7xk are small.

For P1/P1 finite element pairs instability was observed if C ~ 0.

Robustness w.r.t. discretization and problem parameters.

Recent results for 2 and 3 field poroelasticity
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Spurious oscillations in computed pressure UGN
PEVERLREEEEELEEL] a2
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a) Numerical solution by P1-P1 2 05
without stabilization
a) Numerical solution by P1-P1 0
with stabilization 0 0.25 0.75 1

C. Rodrigo et al. / Comput. Methods Appl. Mech. Engrg. 298 (2016) 183-204
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PDE system for 3-field poroelasticity

AN

Physical structure - putting elasticty and flow together

—divC : g(u) +cpVp = fm,
K-tv +Vp =0,
—Cpu%diV(u) —div(v) —cpp%p =_f,

Analytical structure

—divC : e(u) +cu,pVp = fm,
K=ty +Vp =0,
9 13 : 9 _
—Cpuppdiv(u) —div(v) —cpppp = 1
RB Numerical methods for hydro-mechanics in standard and disturbed continua
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Semidiscretization and variational formulation
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In time steps k = 1,2, ... find
uk € Up C HYQ), vk € Ve C H(div, Q), p¥ € Q = L»(Q)
au(u*,m) —(div(n), p*) = f*(n)
m(vk, w) —(div(w), p¥) = G*(w),
—2(div(v¥), q)  —(div(v¥), ) —Z(cpp.a) =)+ ...
Vn € Uy, Vw € Vp, Vg € Q
Here we found the already defined bilinear forms of elasticity a, , mass
matrix of velocities m, etc.
m(v, w) = / kv -wdQ, b,(u, p) = (div(u), p),
Q
b, (v, p) = (div(v), p), c(p; q) = (copP: q)
Possible nonsymmetry b, and b,;. Another nonsymmetry due to 7 can
be removed by scaling with diag(1, 7, 7).
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AN

Analysis of variational formulation UGN

RB

Consider the arrangement ((u,v), p) € V.x W,
Ve = Up X Ve, Vo = Uo X Vo

2 2 2
(s VI = Nulliney + IV Ika .0y lalw = llall2

Define the bilinear forms
A((uv V)’ (7]7 W)) = a(ua 77) + Tm(v7 W)
B((u, v),q) = bu(u, q) + 7b,(v, q)

Variational formulation - find (u,v) € Ve, p € Wp

A((u,v), (n,w)) +B((n, w), p) Fi(n) + G*(w),
B((U, V)a q) 7%(”; Q) = stk(p)+...

V(n, w)eVy, ge W
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Babuska-Brezzi theory for poroelasticity G‘C‘E\I}

Z={(n,w): B((n,w),q) =0 Vg € W}

(div(v), q) = —7(div(v), q) Vg € W

Coerciveness on Z

AL, v), (1, w)) = a(u, ) + 7m(v, V)= 7 [0l a0y + 70 VI )
> (el + i)l ) + VI )

=7 (Nalscay + Wz ) = 71w I

LBB

[B((n,w).p)| [B((0,w).p)|
Sup Sron. 2 SUP - o 2 Bllpll
M S (0] e i (IO w
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Locking and nonconforming FEM for poroelasticity UG

e Discretization with P1/P1 and P1/RT0/P0 may cause locking effect
in poroelasticity, pressure oscillations for a two- and three-field Biot's
model, not parameter robustness

e recent papers

e X. Hua, C. Rodrigo, FJ. Gaspar, LT. Zikatanov, JCAM 310 (2017)
143-154, Crouzeix—Raviart (CR) FEM for elasticity

e C. Rodrigo, X. Hu, P. Ohm, JH. Adler, FJ. Gaspar, L. Zikatanov,
New stabilized discretizations for poroelasticity and the Stokes’
equations, arXiv:1706.05169 [math.NA] 2017 (P1 elements enriched
by bubbles)

e C. Rodrigo, X., FJ. Gaspar, X. Hu, L. Zikatanov, Stability and
monotonicity for some discretizations of the Biot's consolidation
model. Comput. Methods Appl. Mech. Engrg. 298 (2016) 183-204
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Iterative coupling




Iterative coupling for linear/linear HM UGN
Flow Flow
P n P n+1
[] - ]
Mechanics Mechanics
Fully Coupled
Flow | Flow
(P) B (P) .
\ P \ P n+
Mechanics | Mechanics |
(u) (u)

Iteratively Coupled

P.M. Delgado V. M. Krushnarao Kotteda, V. Kumar, Hybrid Fixed-Point Fixed-Stress Splitting Method for Linear Poroelasticity.
Geosciences 2019
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Iterative coupling for linear/linear HM

AN
UGN

full coupling, monolithic scheme

iterative coupling

staggered scheme (one pass, one iteration)

loose coupling (one process is updated after several time steps)
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Gauss-Seidel for semidiscretization G‘C‘i\h

au(u, w) + bi(w, p¥) = Fi(w) Yw € Uy,
b(u¥, q) — c(p*, q) = Fx(q) Vq € W,
can be solved iteratively, e.g. using the inital guess

k,0 k=1 ko0 k—1

vt =u pP=p

and e.g. iterations for i =0,1,...

au(uk’i+1, w) + bl(w,pk’iJrl) = F,f(w) Yw € Uy,
b(uk', q) — c(p**, q) = FX(q) Vq € W,
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Gauss-Seidel for algebraic form G‘C‘i\h

A, B

Az = B, _C

Uk fk
u _ ]_-k.
Pt ] [ fy ]

Note that if A, is regular and C + B,A; 1B/ is regular, then A is regular
(block elimination, factorization).

A, Bf

Zk’l+1 _ Zk,/ +w
-C

(F*— Az
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AN

Uzawa iterations
For C ~0or C =0 it is possible to use the iterations

-1

. ) A BT .

ki+1 ki u 1 fk o ki )
z zo0 ¢ WP+ 0) ( Az

Here w > 0 and w™1P ~ By A, ' By of the Schur complement component.
If u*, p*is the exact solution, e/ = u’ — u* and e;; = p' — p* are the
components of the error, then

et = —ABe]
it =(W P+ C) N (wTP+ C—(C+ BA,'B)) e}
If Bp =B, =B, A, is SPD, C is SPSD and P = [ then the Uzawa

method can be reducted to Richardson method the equation for p,
2

et — (| — wBAT!B e"7 convergence for w < —————.
p ( Y ) P )\maX(BAulB’)
25/46
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Schur complement preconditioners UGN
A, BJ
/

I A,
Au—P_ l B -C BzAu_l I ] [ —5Sa ]

Note that for 2-field poroelasticity we prefer this factorization with the
Schur complement S = Sy = C + B,A; 1B/ as

I A1BT ]

e (1) C can be close to zero and Sa provides a stabilization of C,

e (2) there is a good approximation to BA, 1B/, By A 1B ~ M,.

A, I A'BT | | A, Bf
—Sa ! n —Sa |’
Pp =

Au
“SA |-

RB Numerical methods for hydro-mechanics in standard and disturbed continua 26/46
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Sparse approximation for the Schur complement G‘C‘E\I}

Theorem [Elman, Silvestr, Wathen, Finite Elements and Fast Iterative Solvers]:

C<C+BA'BT <C+1iMm,
1
BM, < BA;'BT < M,

Proof. 9 )
(Bw,q)” = (adiv(w), g)?

< Sau(w, w)(q,q) = £ (Auw, w) (M,q, q)
Taking w = A;1BT g, we get

1
(BA;'B7q.q)" < = (B] g, A,*B] q) (A,q. ).

If the (Stokes type) inf-sup condition is valid,

sup  (adiv(w).a) _ o, (Bw,q) (BA,'B"q,q)
Pw au(w, W)1/2 - Pw (AL,W,W)I/Z - <BTq,Au_lBTq>1/2

_ 1/2
=(BA,'B7q,q) 2> 8 (M,q, q)*/?
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AN

Analysis of diagonal preconditioner UGN
Let .
A A A
M = 5 P =
l Aor Ao —A ]

RB

with Aq1, —Ax, A1 being SPD,

Lemma 1: Let A~11 =S=A; — A21A;21A12, then

o(PIM) C <12‘/g 1> U <1+2\/g 1>

Lemma 2: Let there be &, & > 0 such that &5 < Ay < &S, then

-1 211 4 _ 11,401
o(P M)c< 5 5 1+€0, 1>U< 2+2 1+£1’£o>

RB: Report IGAS 2012, 2015. Note in the case Ay = 0, there is result from M. F. Murphy, G. H.
Golub, and A. J. Wathen, SIAM J. Sci. Comput., 21 (2000)
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AN

Block triangular preconditioners UGN
Ay pPit = / =1+X
R -V e B ’
0
X = X? =0.
BA;Y 0 |’

RB

Right preconditioned system Au_th_l has minimal polynomial

p(A) = (A—1)%

For the left preconditioning, P; ' A,_, = P; (Au_ppt_l) Pt
therefore p (Pt_lAu_p) =P p (Au_th_l) Pr =0, ie. left
preconditioned system has also minimal polynomial of order 2.
Inexact solution of the block subproblems?

Spectral analysis [Axelsson], analysis through field of values [Rodrigo
et al]
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Discrete 3-field poroelasticity system AN

The space discretization provides DAE

.Al Z/l + AU = F

with the matrices Ajand Ag and blocks A<» a, M < m, B, <+ b, ,
B, < b, C < c,

0 0 O A 0 BLT u
A =10 0 0|, Ao=|0 M BT|, U= |v
B, 0 —-C 0 B O p

Backward Euler provides in k+41th step the system
(./41 + 7’./40)fokJrl = .F(tk+1) + All/l"

with the Euler matrix Ag,

A 0 B 1 A 0 BT
A-=1 0 M BT |= 1/7 0 7™ 7BT
i, B -1ic 17| |B, B —C
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Preconditioners

There are several block type preconditioners for the symmetrized Euler

matrix
A 0 B!
Ae=A¥"= 10 M BT
B, B -C

Restricting to block diagonal, SPD ones, we can consider

A 0 511 512 S11 S12
P =10 ™™ or 'P = 521 522 or P = 522
SAM C

A+BIC'B, rBICB
P = ™™+ BT C1B

C

O. Axelsson, RB, P. Byczanski, Computing and Visualization in Science. Vol. 15, No. 4 (2012),
pp. 191-207
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Diagonalization ﬁeiN
e There is spectral equivalence?
(1-7) Su < Su Sw2 <(147) Su 7
S» So1 S S»

where 0 < v < 1 such that

[(Stav, u)| < vv/(Suiu, u)/(Snav, v) Vu,v,

7 < (14 copcer) ", where co [[div(up)lf;, < (Au, u)

For isotropic elasticity with Lame constants A and p, ¢ > A.

e Robustness w.r.t. k and h

e Typical values? of storativity and \ = #

1+v)’

Cop ~ 1070 —107% | ¢y ~ 10° — 109= v < (x)1/2

(1) O. Axelsson, RB, T. Luber, LSSC 2015, LNCS 9374, Springer, 2015, pp. 3-14,

(2) Data Collection Handbook to Support Modelling Impacts of Radioactive Material in Soil and

Building Structures, Argonne Nat. Lab. 2015

RB Numerical methods for hydro-mechanics in standard and disturbed continua
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AN

Fixed strain iterations UGN

The Gauss-Seidel method,

Zk"+1 _ Zk,l 4

1
A, BT ,.
L] ea.

uses triangular preconditioner which requires to solve the system with C
or in the variational form

—c(p*™, q) = — (Pt q) — Teap(pFTY, q) = RE(q) Vq € Wh.

Such equation correspond to PDE

0 .. 0 :
aadlv(u) —I—cppap — div(kVp) = rp.

=0

With respect to a%div(u) = 0, the procedure is called fixed strain
iterations.

RB Numerical methods for hydro-mechanics in standard and disturbed continua
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Fixed stress iterations UGN

RB

We already know, that better preconditioning should use the Schur
complement Su, or its sparse approximation, instead of C alone. Such
sparse approximation of S, can be also derived as follows:

The volume deformation is in a relation with volumetric stress,

0 0 0
aavo, K"a div(u) — aap,

where K}, is the bulk modulus of the porous material, which can be
expressed through Lame moduli as K, = A + %,LL.

The assumption gtovo/ = 0, fixed stress, then provides
K Z.div(u) = £ Zp and
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Fixed stress iterations G‘C‘i\h

kyi+1

Variationally, p is computed from

i o’ i i
—c(ph™ q) = —((cpp + K) pAr q) — meap (PN, q) = RE(q) Vg € We.

Consequently, the triangular preconditioner uses modified C which is a
sparse matrix approximation to Sa.

The additional term is algebraically %ZMP and it can be used for
modification of the original discretized system, which gets the form

Ay BlT uk fu" 0 0 uk
2 - - 2 .
By —C—5%M, p fpk 0 —%M, p

The Gauss-Seidel method then get the form

Ay B1T~ kil _ fx 1 0 9 ki
—C fpk By —%M,

RB Numerical methods for hydro-mechanics in standard and disturbed continua 35/46
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HO time discretizarion

AN

RB

Backward Euler time discretization - time step systems:

1
AEuk+1 _ j—_-k+1 + ;Aluk

1 M BT
Ae=-A1+ A=
E- T B -1c
Radau IlA time discretization uses time step with tw
Lo+ A LA Uk1/3 ]
A laria || wen

o substeps

= RHS

Block diagonal and triangular preconditioners with Euler type blocks on

the diagonal are introduced and analyzed in Axelsson, Blaheta and

Luber!.

10. Axelsson, RB and T. Luber, I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp.

3-14, Springer 2015.
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Nonlinear Hydromechanics




Hydro-mechanics with nonlinearities

AN

RB

linear models - linear couplings (poroelasticity)

non-linear models - linear couplings (Richards model, multiphase
model)

linear models - non-linear couplings

non-linear models - non-linear couplings

Examples of nonlinearities can be different

1
2
3
4.
5
6

. nonlinear elasticity with variable bulk modulus
. plasticity

. unsaturated Richards model

two-phase flow

. Kozeny-Carman

. cubic law

Numerical methods for hydro-mechanics in standard and disturbed continua
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Time-stepping and nonlinearity (j‘c‘;\[}

Time stepping algorithm in discrete form

e Step 0
e For k=1,2,...
e Step k > 0: find (u*, p¥) € X x Y which solve the nonlinear system

Au(uk, pk) BT uk _ f-k
B —C(u*, P || P g |’

where C(u*, p*) = cppM, + T AL (u*, p¥)

end time stepping
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Picard and Newton methods ﬂ‘a\h

Time stepping algorithm with nonlinear iterations

e Step 0
e Fork=1,2,...
e Step k > 0: find (u*, p¥) € X x Y by iterations:
take u*° and p*°
iterate for / =0,1,2,...

0 2Dy (P Geh) D=6

end time stepping
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Nonlinear couplings, Biot-Kozeny model g‘a\ﬁ

We shall consider the model with conductivity depending on volumetric
deformation, k = k(V - u),

ap(p; q) = (k(V - u)Vp, V@)20.

The function k is assumed to be continuously differentiable,
Kmin < k < Kmax more properties of x will be specified later.

Particularly, x can be determined by Kozeny-Carman formula,

R = R0(1_¢0)2 ¢3
o5 (1—9)%
where ¢ is the initial porosity giving the conductivity kg,

o= ¢o+aV - u.
® Josef Kozeny 1927, Prof. at U of Agricultural Sciences in Vienna, since 1929 at
TU Vienna.

® Philipe Carman, 1937 (modified equation), 1956. Prof. at University College
London, UCL Department of Chemical Engineering.
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Picard method for Biot-Kozeny model AN

RB

au(u*, w) + by(w, p*) = Fi(w) VYw € Uy,
b(uk, q) — c(u¥; p*, q) = Ff(q) Vg € Wo

with nonlinearity involved in

c(u*; ¥, a) = ((cop + m)p*, ) + Tu(s(V - )V, V),

where m = o is the fixed stress stabilization term.

Picard method with iterations / =1,2, ...

au(u*!, w) + by(w, p*') = Fi(w) Vw,
b(u*!, q) = ((cpp + M)P"' q) = (w(V - ")V, V) = Fi(q) Va.
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Picard method for Biot-Kozeny model

c
De
4

RB

Theorem
Let & = Tk’{ji)\ < 1 then for | — oo,
cru [|es ']l y < [le”]
and
3

ro e[|, < V5 120 < =5

where cr, and cg, are constants from the corresponding Korn and
Friedrichs identities, The linear convergence of both u*' — u* and

p“! — p¥ in the Sobolev H'-norms is proven.
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Disturbed continua




c.
(9}
Ze

Models for disturbed zones / fractures

We can consider Biot-Kozeny as a simple possibility to model Faults /

Fractures:

e Mechanically F/F behaves as a week material. It can be modified to
material which becomes stiffer when F/F is closing,

e Hydraulic conductivity is decreasing with closing the F/F
(volumetric change), the flow in F/F communicate with the flow in
the porous matrix,

e Couplings are given by fluid pressure contributing to the total stress,
change of conductivity with pore space change and fluid movement
due to opening or closing of pores inside F/F.
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Models for disturbed zones / fractures UGN

In the model from [Comp. Geosciences 2020]
we consider the steady regime which is still
described by two-way coupling as mechanics
influence the conductivity (not the case of
poroelasticity). This model assumes that:

e Mechanically F/F behaves without its own response to outer load,
mutual penetration of F/F walls is avoided by Signorini type
conditions,

e Hydraulic conductivity is connected with aperture (cubic law) and
decreasing with closing the F/F (decreasing aperture), the flow in
F/F communicate with the flow in the porous matrix,

e The coupling is due to fluid pressure on F/F walls and change of
conductivity with the change of aperture.
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Applications
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Gaps - DECOVALEX 2015 - SEALEX
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“Fig. 4.2: Development of relative humidity in four sensor positions (see Fig. 1.3). The simula-
tions with (suffix fracture) and without (no suffix) of the inter-block fractures in the model.
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Conclusions

Important applications in geomechanics (nuclear waste, geothermal
energy, energy accummulation), biomechanics etc.

Interesting mathematics

e coupled processes,

e saddle point structure, stable discretization

e three levels of iterative methods - (1) nonlinear, (2) linear systems,
(3) solution of individual block systems,

e robustness w.r.t. discretization, convergence of iterative solvers

Faults / fractures in granite type rocks - TACR ENDORSE, H2020
EURAD

Thank you for your attention !
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